Put x=cos2θ so that θ=\(\frac{1}{2}cos-1\)x.Then we have:
\(LHS=tan^-1(\frac{√1+x-√1-x}{√1+x+√1-x)}\)
\(=tan^-1(\frac{√1+cos2θ-√1-cos2θ}{√1+cos2θ+√1-cos2θ})\)
\(=tan^-1(\frac{√2cos^2θ-√2sin^2θ}{√2cos^2θ+√2sin^2θ)}\)
\(=tan^-1(\frac{√2cosθ-√2sinθ}{√2cosθ+√2sinθ})\)
\(=tan^-1(\frac{cosθ-sinθ}{cosθ+sinθ})=tan-1(\frac{1-tanθ}{1+tanθ})\)
\(=tan^-1(1)-tan^-1(tanθ)= \frac{π}{4}-θ=\frac{π}{4}-\frac{1}{2}cos^-1x=RHS\)
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: