Step 1: Use the substitution \( t = \tan x \), which gives \( dt = \sec^2 x \, dx \). The limits of integration change accordingly from \( x = 0 \) to \( x = \frac{\pi}{4} \).
Step 2: Substitute and simplify the integral: \[ \int_0^{\frac{\pi}{4}} \log_e (1 + \tan x) \, dx = \int_0^1 \frac{\log_e (1 + t)}{1 + t^2} \, dt \] Step 3: Use integration techniques to solve the resulting integral, which involves recognizing the standard form and applying known integral results. After solving the integral, we get: \[ \int_0^{\frac{\pi}{4}} \log_e (1 + \tan x) \, dx = \frac{\pi}{8} \log_e 2. \] Thus, the required result is proved.
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $