>
questions
List of practice Questions
Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let z=4x+6y be the objective function.The minimum value of z occurs at
KCET
Mathematics
Equation of a Plane
A die is thrown 10 times. The probability that an odd number will come up at least once is
KCET
Mathematics
Probability
If a random variable X follows the binomial distribution with parameters n = 5, p and P (X=2) =9P (X=3), then p is equal to
KCET
Mathematics
binomial distribution
The vectors
\(\overrightarrow {AB}=3\hat i+4\hat k\)
and
\(\overrightarrow {AC}=5\hat i-2\hat j+4\hat k\)
are the sides of a △ABC. The length of the median through A is
KCET
Mathematics
Vectors
The volume of the parallelopiped whose co-terminous edges are
\(\hat j+\hat k,\hat i+\hat k\)
and
\(\hat i+\hat j\)
is
KCET
Mathematics
Vectors
Let
\(\overrightarrow a\)
and
\(\overrightarrow b\)
be two unit vectors and θ is the angle between them. Then
\(\overrightarrow a +\overrightarrow b\)
is a unit vector if
KCET
Mathematics
Vectors
If
\(\overrightarrow a,\overrightarrow b,\overrightarrow c\)
are three non-coplanar vectors and p,q,r are vectors defined by
\(\overrightarrow p=\frac{\overrightarrow a\times \overrightarrow c}{[\overrightarrow a\overrightarrow b\overrightarrow c]}\)
,
\(\overrightarrow q=\frac{\overrightarrow c\times \overrightarrow a}{[\overrightarrow a\overrightarrow b\overrightarrow c]}\)
,
\(\overrightarrow r=\frac{\overrightarrow a\times \overrightarrow b}{[\overrightarrow a\overrightarrow b\overrightarrow c]}\)
then
\((\overrightarrow a+\overrightarrow b).\overrightarrow p+(\overrightarrow b+\overrightarrow c).\overrightarrow q+(\overrightarrow c+\overrightarrow a).\overrightarrow r\)
is
KCET
Mathematics
Vectors
If lines
\(\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}\)
and
\(\frac{x-1}{3k}=\frac{y-5}{1}=\frac{z-6}{-5}\)
are mutually perpendicular then k is equal to
KCET
Mathematics
Various Forms of the Equation of a Line
The distance between the two planes 2x + 3y + 4z = 4 and 4x + 6y +8z = 12 is
KCET
Mathematics
Plane
The sine of the angle between the straight line
\(\frac{x-2}{3}=\frac{y-3}{4}=\frac{4-z}{-5}\)
are the plane 2x-2y+z=5 is
KCET
Mathematics
Angle between a Line and a Plane
\(∫\frac{1}{x[6(logx)^2+7logx+2]}dx=\)
KCET
Mathematics
Integration
\(∫\frac{sin\frac{5x}{2'}}{sin\frac{x}{2}}dx=\)
KCET
Mathematics
Integration
\(\int\limits_1^5(|x-3|+|1-x|)dx\)
=
KCET
Mathematics
Integration
\(\lim\limits_{n \to \infty} (\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+…+\frac{1}{5n})=\)
KCET
Mathematics
Limits
The area of the region bounded by the line y = 3x and the curve y=x
2
in sq. units is
KCET
Mathematics
Area under Simple Curves
The area of the region bounded by the line y = x and the curve y=x
3
is
KCET
Mathematics
Area under Simple Curves
The solution of
\(e^{\frac{dy}{dx}} = x+1,y(0) =3\)
is
KCET
Mathematics
Linear Equations
\(\frac{d}{dx}[cos^2(cot^{-1}\sqrt{\frac{2+x}{2-x}})]\)
is
KCET
Mathematics
Differential equations
The function
\(x^x; x > 0\)
is strictly increasing at
KCET
Mathematics
Integration by Partial Fractions
If
\(f(x) = x e^{x(1-x)}\)
then f(x) is
KCET
Mathematics
types of functions
\(∫\frac{sinx}{3+4cos^2x}dx=\)
KCET
Mathematics
Integration by Partial Fractions
\(\int\limits_{-π}^π(1-x^2)sinx.cos^2xdx=\)
KCET
Mathematics
Integration by Partial Fractions
Let
\(f(x)=\begin{vmatrix}cosx &x& 1\\ 2sinx &x& 2x \\ sinx& x& x\end{vmatrix}\)
.Then
\(\lim\limits_{x \to 0}\frac{f(x)}{x^2}\)
=
KCET
Mathematics
Properties of Determinants
The function f(x) = |cos x| is
KCET
Mathematics
Functions
Let the function satisfy the equation f (x + y) = f(x)f(y) for all x, y ∈ R, where f (0)≠0. If f (5) = 3 and f'(0)=2, then f'(5) is
KCET
Mathematics
Functions
Prev
1
...
8032
8033
8034
8035
8036
...
8524
Next