>
questions
List of practice Questions
A series LCR circuit has \( R = 200 \, \Omega \), \( L = 663 \, \text{mH} \), and \( C = 265 \, \mu\text{F} \). The applied alternating voltage has an amplitude of 50 V and a frequency of 60 Hz so that \( X_L = 250 \, \Omega \) and \( X_C = 100 \, \Omega \). The peak current is
MHT CET - 2020
MHT CET
Physics
AC Circuits
Two masses of 1 gram and 4 gram are moving with equal kinetic energy. The ratio of the magnitudes of their momenta is
MHT CET - 2020
MHT CET
Physics
Surface Tension
If the frequency of incident radiation is kept constant and the experiment is repeated by using incident light of different intensities, then stopping potential (\( V_s \))
MHT CET - 2020
MHT CET
Physics
thermal properties of matter
If \( X \sim B(4, p) \) and \( 2 P(X = 3) = 3 P(X = 2) \), then the value of \( p \) is:
MHT CET - 2020
MHT CET
Mathematics
binomial distribution
If \( \tan \theta + \sin \theta = a \) and \( \tan \theta - \sin \theta = b \), then the values of \( \cot \theta \) and \( \csc \theta \) are respectively:
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
If \( P(\theta) \) lies on the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and \( S \) and \( S' \) are foci of the hyperbola, then \( SP \cdot SP' = \)
MHT CET - 2020
MHT CET
Mathematics
Conic sections
Evaluate:
\[ \frac{\cos 12^\circ - \sin 12^\circ}{\cos 12^\circ + \sin 12^\circ} + \frac{\sin 147^\circ}{\cos 147^\circ} \]
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
In \( \triangle ABC \), if \( \frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c} \) with usual notations, then the triangle is:
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
If one of the lines given by \( kx^2 + xy - y^2 = 0 \) bisects the angle between the co-ordinate axes, then values of \( k \) are:
MHT CET - 2020
MHT CET
Mathematics
Straight lines
The particular solution of the differential equation
\[ \left( y + x \frac{dy}{dx} \right) \sin y = \cos x \quad \text{at} \quad x = 0 \, \text{is:} \]
MHT CET - 2020
MHT CET
Mathematics
Differential equations
If \( A(0, 4, 0) \), \( B(0, 0, 3) \), and \( C(0, 4, 3) \) are the vertices of \( \Delta ABC \), then its incenter is:
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If the angle between the lines whose direction ratios are \( 4, -3, 5 \) and \( 3, 4, k \) is \( \frac{\pi}{3} \), then \( k = \)
MHT CET - 2020
MHT CET
Mathematics
Vector Algebra
If the symbolic form of the switching circuit is \( \sim p \vee ( p \wedge \sim q) \vee q \), then the current flows through the circuit only if:
MHT CET - 2020
MHT CET
Mathematics
Mathematical Logic
The probability distribution of a discrete r.v. \( X \) is:
\[ \begin{array}{c|ccccc} X = x & 0 & 1 & 2 & 3 & 4 \\ P(X = x) & k & 2k & 4k & 2k & k \\ \end{array} \]
Then, the value of \( P(X \leq 2) \) is:
MHT CET - 2020
MHT CET
Mathematics
Probability
The rate of decay of mass of a certain substance at time \( t \) is proportional to the mass at that instant. The time during which the original mass of \( m_0 \) gram will be left to \( m_1 \) gram is
\[ k \text{ is constant of proportionality} \]
MHT CET - 2020
MHT CET
Mathematics
Differential equations
If the error involved in making a certain measurement is continuous random variable \( X \) with probability density function \( f(x) = k (4 - x^2) \) for \( -2 \leq x \leq 2 \), and \( f(x) = 0 \) otherwise, then
\[ P(|-1<X<1|) \]
MHT CET - 2020
MHT CET
Mathematics
Probability
The equation of the line passing through the points \( (3, 4, -7) \) and \( (6, -1, 1) \) is:
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If \( | \vec{a} \, \vec{b} \, \vec{c} | = 3 \), then the volume of the parallelepiped with \( 2\vec{a} + \vec{b} \), \( 2\vec{b} + \vec{c} \), \( 2\vec{c} + \vec{a} \) as coterminous edges is:
MHT CET - 2020
MHT CET
Mathematics
Vector Algebra
If \( \frac{x}{x-y} = \log \left( \frac{a}{x-y} \right) \), then \( \frac{dy}{dx} = \)
MHT CET - 2020
MHT CET
Mathematics
Differentiation
Evaluate the integral:
\[ \int_{-1}^{1} \left[ \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right] dx \]
MHT CET - 2020
MHT CET
Mathematics
Some Properties of Definite Integrals
Evaluate the integral:
\[ \int \left[ \frac{1 - \log x}{1 + (\log x)^2} \right]^2 dx \]
MHT CET - 2020
MHT CET
Mathematics
Integration
The equation of a circle passing through the origin and making x-intercept 3 and y-intercept -5 is:
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
The co-ordinates of the foot of the perpendicular from the point \( (0, 2, 3) \) on the line
\[ \frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3} \]
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If \(A(3,2,-1)\) and \(B(1,4,3)\), then the equation of the plane which bisects the segment \(AB\) perpendicularly is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
ABCD is a parallelogram. \(P\) is the midpoint of \(AB\). If \(R\) is the point of intersection of \(AC\) and \(DP\), then \(R\) divides \(AC\) internally in the ratio
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
Prev
1
...
5611
5612
5613
5614
5615
...
8524
Next