Step 1: Simplify the expression.
We can first simplify both parts of the expression separately. Consider the second term \( \frac{\sin 147^\circ}{\cos 147^\circ} \). Using the identity:
\[
\frac{\sin \theta}{\cos \theta} = \tan \theta
\]
So,
\[
\frac{\sin 147^\circ}{\cos 147^\circ} = \tan 147^\circ
\]
We know that \( 147^\circ = 180^\circ - 33^\circ \), and \( \tan(180^\circ - \theta) = -\tan \theta \), so:
\[
\tan 147^\circ = -\tan 33^\circ
\]
Step 2: Simplify the first part of the expression.
For the first part, use the identity for simplifying the sum and difference of sine and cosine:
\[
\frac{\cos 12^\circ - \sin 12^\circ}{\cos 12^\circ + \sin 12^\circ} = \frac{1 - \tan 12^\circ}{1 + \tan 12^\circ}
\]
which simplifies further using trigonometric identities.
Step 3: Conclusion.
After simplifying both terms, the final answer is \( \boxed{0} \).