Step 1: Use vector representation.
Let the position vectors of points \(A,B,C,D\) be \(\vec{a},\vec{b},\vec{c},\vec{d}\) respectively.
Since \(ABCD\) is a parallelogram,
\[
\vec{a}+\vec{c}=\vec{b}+\vec{d}
\]
Step 2: Find the position vector of point \(P\).
Given \(P\) is the midpoint of \(AB\),
\[
\vec{p}=\frac{\vec{a}+\vec{b}}{2}
\]
Step 3: Parametric form of the lines.
Point \(R\) lies on \(AC\):
\[
\vec{r}=\vec{a}+t(\vec{c}-\vec{a})
\]
Point \(R\) also lies on \(DP\):
\[
\vec{r}=\vec{d}+s(\vec{p}-\vec{d})
\]
Step 4: Equate and simplify.
Substitute \(\vec{p}\) and use \(\vec{d}=\vec{a}+\vec{c}-\vec{b}\).
On simplifying, we obtain
\[
t=\frac{1}{3}
\]
Step 5: Determine the ratio.
Thus,
\[
AR:RC = t:(1-t) = \frac{1}{3}:\frac{2}{3} = 1:2
\]