For \( x > -\dfrac{1}{2} \), let \( f_1(x) = \dfrac{2x}{1+2x} \), \( f_2(x) = \log_e(1 + 2x) \) and \( f_3(x) = 2x \). Then which one of the following is TRUE?
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function and let \( J \) be a bounded open interval in \( \mathbb{R} \). Define \[ W(f, J) = \sup \{ f(x) | x \in J \} - \inf \{ f(x) | x \in J \} \] Which one of the following is FALSE?
Let \( I \) denote the \( 4 \times 4 \) identity matrix. If the roots of the characteristic polynomial of a \( 4 \times 4 \) matrix \( M \) are \( \pm \sqrt{\dfrac{1 \pm \sqrt{5}}{2}} \), then \( M^8 \) is
A particular integral of the differential equation \[ y'' + 3y' + 2y = e^{e^x} \] is
An integrating factor of the differential equation \[ \left( y + \frac{1}{3} y^3 + \frac{1}{2} x^2 \right) \, dx + \frac{1}{4} (x + xy^2) \, dy = 0 \] is
Let \( y(x) \) be the solution of the differential equation \( \frac{dy}{dx} + y = f(x) \), for \( x \geq 0, y(0) = 0 \), where \[ f(x) = \begin{cases} 2, & 0 \leq x < 1 \\ 0, & x \geq 1 \end{cases} \] Then \( y(x) \) is
If \( \hat{F}(x, y) = (3x - 8y) \hat{i} + (4y - 6xy) \hat{j} \) for \( (x, y) \in \mathbb{R}^2 \), then \( \oint_C \vec{F} \cdot d \vec{r} \), where \( C \) is the boundary of the triangular region bounded by the lines \( x = 0 \), \( y = 0 \), and \( x + y = 1 \) oriented in the anti-clockwise direction, is
Let \( f(x, y) = \begin{cases} \dfrac{xy}{(x^2 + y^2)^{\alpha}}, & (x, y) \neq (0,0) \\ 0, & (x, y) = (0,0) \end{cases} \) Then which one of the following is TRUE for \( f \) at the point \( (0, 0) \)?
For \( x \in \mathbb{R} \), let \( f(x) = \begin{cases} x^3 \sin \left( \frac{1}{x} \right), & x \neq 0 \\ 0, & x = 0 \end{cases} \) . Then which one of the following is FALSE?
Suppose that \( f, g : \mathbb{R} \to \mathbb{R} \) are differentiable functions such that \( f \) is strictly increasing and \( g \) is strictly decreasing. Define \( p(x) = f(g(x)) \) and \( q(x) = g(f(x)) \), \( \forall x \in \mathbb{R} \). Then, for \( t > 0 \), the sign of \( \int_0^t p'(x) (q'(x)-3) \, dx \) is
Let \( a_n = \dfrac{(-1)^{n}}{\sqrt{1+n}} \) and let \( c_n = \sum_{k=0}^{n} a_{n-k} a_k \), where \( n \in \mathbb{N} \cup \{0\} \). Then which one of the following is TRUE?
Let \( a_n = n + \frac{1}{n} \), \( n \in \mathbb{N} \). Then the sum of the series \( \sum_{n=1}^{\infty} (-1)^{n+1} \dfrac{a_{n+1}}{n!} \) is
Let \( a, b, c \in \mathbb{R} \). Which of the following values of \( a, b, c \) do NOT result in the convergence of the series \[ \sum_{n=3}^{\infty} \frac{a^n}{n^b (\log_e n)^c} ? \]
$$\text{Let } a_n = \begin{cases} 2 + \dfrac{(-1)^{\frac{n-1}{2}}}{n}, & \text{if } n \text{ is odd} \\ 1 + \dfrac{1}{2^n}, & \text{if } n \text{ is even} \end{cases}, \quad n \in \mathbb{N}.$$Then which one of the following is TRUE?
Let \( s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} \) for \( n \in \mathbb{N} \). Then which one of the following is TRUE for the sequence \( \{ s_n \}_{n=1}^{\infty} \)?