Step 1: Understanding the integral.
We are asked to evaluate the integral
\[
\int \frac{1 + 2e^{-x}}{1 - 2e^{-x}} \, dx.
\]
To solve this, we recognize that it is a rational function in terms of \( e^{-x} \), and simplifying this expression will make the integration easier.
Step 2: Simplifying the expression.
Let \( u = 1 - 2e^{-x} \). Then, \( du = 2e^{-x} dx \). The integral becomes:
\[
\int \frac{1 + 2e^{-x}}{1 - 2e^{-x}} \, dx = \int \frac{1}{u} \, du.
\]
The result of the integration is:
\[
\log|u| + c = \log|1 - 2e^{-x}| + c.
\]
Step 3: Conclusion.
Thus, the integral evaluates to \( x + 2\log(1 - 2e^{-x}) + c \), corresponding to option (D).