Let f,g : R → R be functions defined by*
\(f(x) = \begin{cases} [x], & x < 0 \\ |1 - x|, & x \geq 0 \end{cases}\)
and \(g(x) = \begin{cases} e^x - x, & x < 0 \\ {(x - 1)^2 - 1}, & x \geq 0 \end{cases}\)
Where [x] denotes the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly: