Let ЁЭСЛ1,ЁЭСЛ2, тАж , ЁЭСЛЁЭСЫ be a random sample from a population having the probability density function
\(f(x;╬╝) =\begin{cases} \frac{1}{2}e-(\frac{x-2╬╝}{2}), & \quad \text{if }0>2╬╝,\\ 0, & \quad Otherwise \end{cases}\)
where тИТтИЮ < ЁЭЬЗ < тИЮ. For estimating ЁЭЬЗ, consider estimators
\(T_1=\frac{\overline{X}-2}{2}\) and \(T_2=\frac{nX_{(1)}-2}{2n}\)
where ЁЭСЛ╠Е =\(\frac{1 }{ЁЭСЫ} тИС^n_{i=1} x_i\) and Xi and X(i)=min{ЁЭСЛ1, ЁЭСЛ2, тАж , ЁЭСЛЁЭСЫ}. Then, which one of the following statements is TRUE?