>
questions
List of practice Questions
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; 9x^2 - 12xy + 4y^2 - 74x - 98y + 324 = 0 & (I) \; \text{Hyperbola} \\ (B) \; 12x^2 + 7xy - 12y^2 + 10x + 55y - 125 = 0 & (II) \; \text{A pair of straight lines} \\ (C) \; x^2 + 3xy + 2y^2 + x + y = 0 & (III) \; \text{Ellipse} \\ (D) \; 5x^2 + y^2 - 30x + 1 = 0 & (IV) \; \text{Parabola} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Mathematics
Analytical Geometry
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \dfrac{y^2}{36} - \dfrac{x^2}{16} = 1 & (I) \; \text{Eccentricity is } 2\sqrt{2} \\ (B) \; 7x^2 + 12xy - 2y^2 - 2x + 4y - 7 = 0 & (II) \; \text{Eccentricity is } \tfrac{3}{2} \\ (C) \; 7x^2 - y^2 = 224 & (III) \; \text{Eccentricity is } \tfrac{\sqrt{13}}{3} \\ (D) \; \dfrac{x^2}{16} - \dfrac{y^2}{20} = \dfrac{1}{9} & (IV) \; \text{Asymptotes are } y = \pm \tfrac{3}{2}x \\ \hline \end{array} \]
CUET (PG) - 2025
CUET (PG)
Mathematics
Analytical Geometry
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; P \text{ and } Q \text{ are two perpendicular forces, acting at a point} & (I) \; R = |P - Q| \\ (B) \; P \text{ and } Q \text{ are equal, forces acting at a point at an angle } \alpha & (II) \; R = P + Q \\ (C) \; P \text{ and } Q \text{ are acting at a point in same direction} & (III) \; R = 2P \cos(\tfrac{\alpha}{2}) \\ (D) \; P \text{ and } Q \text{ are acting at a point in opposite direction} & (IV) \; R = \sqrt{P^2 + Q^2} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Mathematics
Mechanics
The integral equation corresponding to the boundary value problem \[ \frac{d^2y}{dx^2} + \lambda y(x) = 0; \quad y(0) = 0; \quad y(1) = 0 \] is
where \[ k(x,t) = \begin{cases} t(1-x), & \text{if } t < x \\ x(1-t), & \text{if } t > x \end{cases} \]
CUET (PG) - 2025
CUET (PG)
Mathematics
Integral Equations
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I (Curve)} & \textbf{List-II (Orthogonal trajectory)} \\ \hline (A) \; xy = c & (I) \; \tfrac{y^2}{2} + x^2 = c \\ (B) \; e^x + e^{-y} = c & (II) \; y(y^2 + 3x^2) = c \\ (C) \; y^2 = cx & (III) \; y^2 - x^2 = 2c \\ (D) \; x^2 - y^2 = cx & (IV) \; e^y - e^{-x} = c \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Mathematics
Differential Equations
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \text{Classius Clapeyron equation} & (I) \; PV^\gamma = \text{constant} \\ (B) \; \text{Gibbs Function} & (II) \; U + PV \\ (C) \; \text{Enthalpy} & (III) \; U - TS + PV \\ (D) \; \text{Adiabatic change in Perfect Gas} & (IV) \; \dfrac{dP}{dT} = \dfrac{L}{T (V_2 - V_1)} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Geophysics
Thermodynamics
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \text{Circular Fringes} & (I) \; \text{Nicol prism} \\ (B) \; \text{Straight parallel and equidistant interference pattern} & (II) \; \text{Newton's Ring experiment} \\ (C) \; \text{Polarizer} & (III) \; \text{Interference in wedge-shaped film} \\ (D) \; \text{E-ray and O-ray travel with same speed} & (IV) \; \text{Optic axis} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Geophysics
Wave optics
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \text{Force} & (I) \; \text{Torque} \\ (B) \; \text{Distance covered} & (II) \; \text{Angle described} \\ (C) \; \text{Mass} & (III) \; \text{Moment of inertia} \\ (D) \; \text{Linear velocity} & (IV) \; \text{Angular velocity} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Geophysics
Rotational motion
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \text{Zener diode} & (I) \; \text{Negative resistance region} \\ (B) \; \text{Tunnel diode} & (II) \; \text{Voltage regulator} \\ (C) \; \text{Rectifier} & (III) \; \text{Pulsating d.c.} \\ (D) \; \text{Light emitting diode} & (IV) \; \text{Gallium Arsenide phosphide (GaAsP)} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Geophysics
Electronics
Match List-I with List-II
\[ \begin{array}{|l|l|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline (A) \; \text{Displacement current } (J_d) & (I) \; \frac{\epsilon_0}{2} \int E^2 d\tau \\ (B) \; \text{Poynting vector} & (II) \; \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\ (C) \; \text{Energy stored in electric field } (\vec{E}) & (III) \; \frac{1}{\mu_0}(\vec{E} \times \vec{B}) \\ (D) \; \text{Gauss's Law} & (IV) \; \epsilon_0 \frac{\partial \vec{E}}{\partial t} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Geophysics
Electromagnetism
The general solution of differential equation \( \frac{d^2y}{dx^2} + 9y = \cos(3x) \) is:
CUET (PG) - 2025
CUET (PG)
Mathematics
Differential Equations
The particular integral of differential equation \( \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\log x \) is:
CUET (PG) - 2025
CUET (PG)
Mathematics
Differential Equations
Which one of the following statement is not correct?
CUET (PG) - 2025
CUET (PG)
Mathematics
Differential Equations
The Laplace transform of \( \cos\sqrt{t} \) is:
CUET (PG) - 2025
CUET (PG)
Mathematics
Laplace transforms
The value of \( \oint_S \vec{F} \cdot d\vec{s} \) where \( \vec{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k} \) taken over the cylinder \( x^2+y^2=4, z=0 \) and \( z=3 \) is:
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
The directional derivative of \( \nabla \cdot (\nabla f) \) at the point (1, -2, 1) in the direction of the normal to the surface \( xy^2z = 3x + z^2 \) where \( f = 2x^3y^2z^4 \) and \( \nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z} \) is
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
Let \( \vec{F} \) be the vector valued function and f be a scalar function. Let \( \nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z} \) then,
(A) div (grad f) = \( \nabla^2 f \)
(B) curl curl \( \vec{F} \) = grad curl \( \vec{F} \) - \( \nabla^2 \vec{F} \)
(C) div curl \( \vec{F} \) = \( \vec{0} \)
(D) curl grad f = \( \vec{0} \)
(E) div (\(f\vec{F}\)) = f div \( \vec{F} \) + (grad f) \( \times \vec{F} \)
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
If two stones are thrown vertically upwards with their velocities in the ratio 2:5, then the ratio of the maximum heights attained by the stones is
CUET (PG) - 2025
CUET (PG)
Mathematics
Mechanics
If three forces of magnitudes 8 newtons, 5 newtons and 4 newtons acting a point are in equilibrium, then the angle between the two smaller forces is
CUET (PG) - 2025
CUET (PG)
Mathematics
Mechanics
Two forces acting at a point of a body are equilibrium if and only if they
(A) are equal in magnitude
(B) have same direction
(C) have opposite direction
(D) act along the same straight line
(E) are not equal in magnitude but have same direction
Choose the correct answer from the options given below:
CUET (PG) - 2025
CUET (PG)
Mathematics
Mechanics
The value of \( \int_2^3 \vec{A} \cdot \frac{d\vec{A}}{dt} dt \) if \( \vec{A}(2) = 2\hat{i} - \hat{j} + 2\hat{k} \) and \( \vec{A}(3) = 4\hat{i} - 2\hat{j} + 3\hat{k} \) is
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
If R is a closed region in the xy-plane bounded by a simple closed curve C and if M(x, y) and N(x, y) are continuous functions of x and y having continuous derivative in R, then
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
The surface area of the plane \(x + 2y + 2z = 12\) cut off by \(x=0, y=0\) and \(x^2+y^2=16\) is
CUET (PG) - 2025
CUET (PG)
Mathematics
Vector Calculus
A necessary and sufficient condition that the general equation of second degree \(ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0\) may represent a pair of straight lines is
CUET (PG) - 2025
CUET (PG)
Mathematics
Analytical Geometry
The plane \(x + y + z = \sqrt{3}\lambda\) touches the sphere \(x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0\) if:
CUET (PG) - 2025
CUET (PG)
Mathematics
Three Dimensional Geometry
Prev
1
...
222
223
224
225
226
...
7886
Next