>
Exams
>
Mathematics
>
Limit and Continuity
>
the value of the limit as x approaches 0 for frac
Question:
The value of the limit as $x$ approaches $0$ for $\frac{\sin(5x)
{x}$ is}
Show Hint
Always try to express trigonometric limits in terms of $\frac{\sin x}{x}$ when $x$ approaches zero.
IPU CET - 2025
IPU CET
Updated On:
Jan 20, 2026
1
5
$\frac{1}{5}$
0
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Use the standard limit.
A standard limit in calculus is: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]
Step 2: Rewrite the given expression.
\[ \frac{\sin(5x)}{x} = 5 \cdot \frac{\sin(5x)}{5x} \]
Step 3: Apply the limit.
As $x \to 0$, $5x \to 0$, hence \[ \lim_{x \to 0} \frac{\sin(5x)}{5x} = 1 \]
Step 4: Final calculation.
\[ \lim_{x \to 0} \frac{\sin(5x)}{x} = 5 \times 1 = 5 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limit and Continuity
If $f(x) = 3x - b$, $x>1$ ; $f(x) = 11$, $x = 1$ ; $f(x) = -3x - 2b$, $x<1$ is continuous at $x = 1$, then the values of $a$ and $b$ are :
CBSE CLASS XII - 2025
Mathematics
Limit and Continuity
View Solution
If \( f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \) is continuous at \( x = 0 \), then the value of 'a' is :
CBSE CLASS XII - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f, g : \mathbb{R} \to \mathbb{R} \) be two functions defined by \[ f(x) = \begin{cases} x |x| \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] and \[ g(x) = \begin{cases} x^2 \sin \frac{1}{x} + x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] Then, which one of the following is TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
If \( f(x) = \begin{cases} -2 & \text{if } x \le -1 \\ 2x & \text{if } -1 < x \le 1 \\ 2 & \text{if } x > 1 \end{cases} \), then test the continuity of the function at \( x = -1 \) and at \( x = 1 \).
UP Board XII - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f, g : \mathbb{R} \to \mathbb{R} \) be two functions defined by \[ f(x) = \begin{cases} |x|^{1/8} \sin \tfrac{1}{|x|} \cos x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] and \[ g(x) = \begin{cases} e^x \cos \tfrac{1}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] Then, which one of the following is TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
View More Questions
Questions Asked in IPU CET exam
The derivative of $e^{2x}\sin x$ with respect to $x$ is
IPU CET - 2025
Differentiation
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Vectors
View Solution
Synonym of ``Brief'' is
IPU CET - 2025
Synonyms
View Solution
Spot the error: ``I prefer coffee than tea.''
IPU CET - 2025
Vocabulary
View Solution
The idiom ``A piece of cake'' means
IPU CET - 2025
Idioms & Phrases
View Solution
View More Questions