Out of 1000 individuals in a town, 100 unidentified individuals are covid positive. Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid-positive individuals. The strategy is to:
(i) Collect saliva samples from all 1000 individuals and randomly group them into sets of 5.
(ii) Mix the samples within each set and test the mixed sample for covid.
(iii) If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative.
(iv) If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid.
Given this strategy, no more than _____________testing kits will be required to identify all the 100 covid positive individuals irrespective of how they are grouped.
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two fair dice (with faces labeled 1, 2, 3, 4, 5, and 6) are rolled. Let the random variable \( X \) denote the sum of the outcomes obtained. The expectation of \( X \) is _________ (rounded off to two decimal places).
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
A positive-edge-triggered sequential circuit is shown below. There are no timing violations in the circuit. Input \( P_0 \) is set to logic ‘0’ and \( P_1 \) is set to logic ‘1’ at all times. The timing diagram of the inputs \( SEL \) and \( S \) are also shown below. The sequence of output \( Y \) from time \( T_0 \) to \( T_3 \) is _________.
