Question:

One of the 15th roots of \( -1 \) is:

Show Hint

To find the \( n \)-th roots of a complex number, use the formula \( z_k = \text{cis} \left( \frac{\theta + 2k\pi}{n} \right) \) and substitute appropriate values of \( k \).
Updated On: May 15, 2025
  • \( \text{cis} 0 \)
  • \( \text{cis} \frac{14\pi}{15} \)
  • \( \text{cis} \frac{13\pi}{15} \)
  • \( \text{cis} \frac{8\pi}{15} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The general formula for the \( n \)-th roots of a complex number \( z = r \text{cis} \theta \) is given by: \[ z_k = \text{cis} \left( \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, 2, \dots, n-1 \] For \( -1 \), we have \( r = 1 \) and \( \theta = \pi \). We need to find one of the 15th roots of \( -1 \), so we apply the formula with \( n = 15 \): \[ z_k = \text{cis} \left( \frac{\pi + 2k\pi}{15} \right) \] For \( k = 6 \), we get: \[ z_6 = \text{cis} \left( \frac{\pi + 2(6)\pi}{15} \right) = \text{cis} \left( \frac{13\pi}{15} \right) \] Thus, the correct answer is \( \text{cis} \frac{13\pi}{15} \), which corresponds to option (3).
Was this answer helpful?
0
0