On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively:
1. Anode reaction: - $\mathrm{PbSO}_{4}$ is reduced to $\mathrm{Pb}$. - $\mathrm{Pb}^{2+} \rightarrow \mathrm{Pb}^{0}$ - $\mathrm{x}_{1} = +2$, $\mathrm{y}_{1} = 0$
2. Cathode reaction: - $\mathrm{PbSO}_{4}$ is oxidized to $\mathrm{PbO}_{2}$. - $\mathrm{Pb}^{2+} \rightarrow \mathrm{Pb}^{4+}$ - $\mathrm{x}_{2} = +2$, $\mathrm{y}_{2} = +4$
Therefore, the correct answer is (2) $+2,0,+2,+4$.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).