To solve this problem, we need to determine the correct statement about the fuel cell based on the given standard cell potential and the standard reduction potentials provided in the options. Let's analyze the information step-by-step:
Now, let's verify each statement:
Therefore, the correct answer is: The standard half cell reduction potential for the reduction of CO\(_2\) (E\(^\circ_{CO_2/CH_3OH}\)) is 19 mV.
Let's analyze the fuel cell based on the oxidation of methanol in air.
The overall reaction is:
CH₃OH(l) + 3/2 O₂(g) → CO₂(g) + 2H₂O(l)
We are given that the standard cell potential E°cell = 1.21 V, and the standard reduction potential for O₂/H₂O is E°(O₂/H₂O) = 1.229 V.
We want to find the standard reduction potential for CO₂/CH₃OH, which we'll denote as E°(CO₂/CH₃OH).
The overall cell potential is given by:
E°cell = E°(cathode) - E°(anode)
In this fuel cell, oxygen is reduced at the cathode, and methanol is oxidized at the anode. Therefore:
E°cell = E°(O₂/H₂O) - E°(CO₂/CH₃OH)
We want to find E°(CO₂/CH₃OH), so we can rearrange the equation:
E°(CO₂/CH₃OH) = E°(O₂/H₂O) - E°cell
Plugging in the given values:
E°(CO₂/CH₃OH) = 1.229 V - 1.21 V
E°(CO₂/CH₃OH) = 0.019 V
Converting this to mV:
E°(CO₂/CH₃OH) = 0.019 V * 1000 mV/V = 19 mV
Therefore, the standard half cell reduction potential for the reduction of CO₂ (E°(CO₂/CH₃OH)) is 19 mV.
Final Answer: The final answer is The standard half cell reduction potential for the reduction of CO\( _2 \) (E\(^\circ_{CO_2/CH_3OH})\) is 19 mV


Electricity is passed through an acidic solution of Cu$^{2+}$ till all the Cu$^{2+}$ was exhausted, leading to the deposition of 300 mg of Cu metal. However, a current of 600 mA was continued to pass through the same solution for another 28 minutes by keeping the total volume of the solution fixed at 200 mL. The total volume of oxygen evolved at STP during the entire process is ___ mL. (Nearest integer)
Given:
$\mathrm{Cu^{2+} + 2e^- \rightarrow Cu(s)}$
$\mathrm{O_2 + 4H^+ + 4e^- \rightarrow 2H_2O}$
Faraday constant = 96500 C mol$^{-1}$
Molar volume at STP = 22.4 L
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.