Step 1: Understanding the Concept
The problem involves solving a trigonometric equation containing $\sin^2\theta$, $\cos^2\theta$, and $\sin\theta\cos\theta$.
We simplify it using standard identities and, if necessary, divide through by $\cos^2\theta$
to express it in terms of $\tan\theta$, making it easier to solve.
Step 2: Key Formula or Approach
$\sin^2\theta + \cos^2\theta = 1$
$\tan\theta = \dfrac{\sin\theta}{\cos\theta}$
$\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = \cos^2\theta - \sin^2\theta$
We transform the equation to involve only one trigonometric ratio, $\tan\theta$ or $2\theta$, to find possible solutions.
Step 3: Detailed Explanation
Given:
\[
\sin^2\theta + 2\cos^2\theta - \sqrt{3}\sin\theta\cos\theta = 2
\]
Substitute $\sin^2\theta + \cos^2\theta = 1$:
\[
1 + \cos^2\theta - \sqrt{3}\sin\theta\cos\theta = 2
\]
Simplifying:
\[
\cos^2\theta - \sqrt{3}\sin\theta\cos\theta - 1 = 0
\]
Divide by $\cos^2\theta$ (assuming $\cos\theta \neq 0$):
\[
1 - \sqrt{3}\tan\theta - \tan^2\theta = 0
\]
Rearranging:
\[
\tan^2\theta + \sqrt{3}\tan\theta - 1 = 0
\]
Solving the quadratic:
\[
\tan\theta = \frac{-\sqrt{3} \pm \sqrt{3+4}}{2} = \frac{-\sqrt{3} \pm \sqrt{7}}{2}
\]
These give two possible $\tan\theta$ values. However, since $\sqrt{7}$ is irrational and doesn’t correspond to simple angles, we verify through geometric analysis.
Alternatively, use double angle identities:
\[
\cos(2\theta + \pi/3) = \frac{1}{2}
\]
The general solution for $\cos u = 1/2$ is $u = 2n\pi \pm \pi/3$.
Hence,
\[
2\theta + \pi/3 = 2n\pi \pm \pi/3
\]
For $2\theta + \pi/3 = 2n\pi + \pi/3 \Rightarrow \theta = n\pi$, and for $2\theta + \pi/3 = 2n\pi - \pi/3 \Rightarrow \theta = n\pi - \pi/3$.
In the interval $[-\pi, \pi)$, valid solutions are:
\[
\theta = -\pi, 0, -\pi/3, 2\pi/3
\]
Step 4: Final Answer
\[
\boxed{\theta = \{-\pi, 0, -\pi/3, 2\pi/3\}}
\]
Hence, there are four valid solutions in the interval $[-\pi, \pi)$.