We are given:
\[
x = p \cos^3 \alpha \quad \text{and} \quad y = q \sin^3 \alpha
\]
Step 1: Divide both sides of the equation \( x = p \cos^3 \alpha \) by \( p \):
\[
\frac{x}{p} = \cos^3 \alpha
\]
Step 2: Raise both sides to the power \( \frac{2}{3} \):
\[
\left( \frac{x}{p} \right)^{2/3} = (\cos^3 \alpha)^{2/3} = \cos^2 \alpha
\]
Step 3: Similarly, divide both sides of the second equation \( y = q \sin^3 \alpha \) by \( q \):
\[
\frac{y}{q} = \sin^3 \alpha
\]
Step 4: Raise both sides to the power \( \frac{2}{3} \):
\[
\left( \frac{y}{q} \right)^{2/3} = (\sin^3 \alpha)^{2/3} = \sin^2 \alpha
\]
Step 5: Add the two results:
\[
\left( \frac{x}{p} \right)^{2/3} + \left( \frac{y}{q} \right)^{2/3} = \cos^2 \alpha + \sin^2 \alpha
\]
Step 6: Apply the Pythagorean identity:
\[
\cos^2 \alpha + \sin^2 \alpha = 1
\]
So, the final answer is:
\[
\boxed{1}
\]