Given the equations: \( \tan A + \tan B + \tan C = \tan A \tan B \tan C \) and \( A + B + C = \pi \), we need to determine the value of \( \tan A \tan B + \tan B \tan C + \tan C \tan A \).
Using the identity: \(\tan(A + B + C) = \tan \pi = 0\), we have:
\(\tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
Substitute \(\tan A + \tan B + \tan C = \tan A \tan B \tan C\) into the equation:
\(0 = \frac{\tan A \tan B \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
This simplifies to:
\(0 = \frac{0}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
Since the numerator is zero, the equation holds true regardless of the denominator (as long as it doesn't make the division undefined), implying:
\(1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A) \neq 0\)
Thus, \(\tan A \tan B + \tan B \tan C + \tan C \tan A = 1\).
Therefore, the value is 1.
If \( \cos^2(10^\circ) \cos(20^\circ) \cos(40^\circ) \cos(50^\circ) \cos(70^\circ) = \alpha + \frac{\sqrt{3}}{16} \cos(10^\circ) \), then \( 3\alpha^{-1} \) is equal to: