The bond order (B.O.) is calculated using the formula:
\[ \text{B.O.} = \frac{\text{Number of bonding electrons} - \text{Number of antibonding electrons}}{2}. \]
{C$_2$:}
\[ (12e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, [\pi_{2px} = \pi_{2py}]^4. \]
\[ \text{B.O.} = \frac{8 - 4}{2} = 2. \]
{O$_2$:} \[ (16e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \sigma_{2p_z}^2, [\pi_{2px} = \pi_{2py}]^4, [\pi_{2px}^{{\ast}} = \pi_{2py}^{{\ast}}]^2. \]
\[ \text{B.O.} = \frac{10 - 6}{2} = 2. \]
{Be$_2$:} \[ (8e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}. \]
\[ \text{B.O.} = \frac{4 - 4}{2} = 0. \]
{Li$_2$:} \[ (6e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2. \]
\[ \text{B.O.} = \frac{4 - 2}{2} = 1. \]
{Ne$_2$:} \[ (20e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \sigma_{2p_z}^2, [\pi_{2px} = \pi_{2py}]^4, [\pi_{2px}^{{\ast}} = \pi_{2py}^{{\ast}}]^4, \sigma_{2p_z}^{{\ast}2}. \]
\[ \text{B.O.} = \frac{10 - 10}{2} = 0. \]
{N$_2$:} \[ (14e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \pi_{2px}^2, \pi_{2py}^2, \sigma_{2p_z}^2. \]
\[ \text{B.O.} = \frac{10 - 4}{2} = 3. \]
{H$_2$:} \[ (2e^-) : \sigma_{1s}^2. \]
\[ \text{B.O.} = \frac{2 - 0}{2} = 1. \]
Molecules with bond order 2: C$_2$ and O$_2$.
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the INCORRECT statement(s) is (are):
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: