The bond order (B.O.) is calculated using the formula:
\[ \text{B.O.} = \frac{\text{Number of bonding electrons} - \text{Number of antibonding electrons}}{2}. \]
{C$_2$:}
\[ (12e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, [\pi_{2px} = \pi_{2py}]^4. \]
\[ \text{B.O.} = \frac{8 - 4}{2} = 2. \]
{O$_2$:} \[ (16e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \sigma_{2p_z}^2, [\pi_{2px} = \pi_{2py}]^4, [\pi_{2px}^{{\ast}} = \pi_{2py}^{{\ast}}]^2. \]
\[ \text{B.O.} = \frac{10 - 6}{2} = 2. \]
{Be$_2$:} \[ (8e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}. \]
\[ \text{B.O.} = \frac{4 - 4}{2} = 0. \]
{Li$_2$:} \[ (6e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2. \]
\[ \text{B.O.} = \frac{4 - 2}{2} = 1. \]
{Ne$_2$:} \[ (20e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \sigma_{2p_z}^2, [\pi_{2px} = \pi_{2py}]^4, [\pi_{2px}^{{\ast}} = \pi_{2py}^{{\ast}}]^4, \sigma_{2p_z}^{{\ast}2}. \]
\[ \text{B.O.} = \frac{10 - 10}{2} = 0. \]
{N$_2$:} \[ (14e^-) : \sigma_{1s}^2, \sigma_{1s}^{{\ast}2}, \sigma_{2s}^2, \sigma_{2s}^{{\ast}2}, \pi_{2px}^2, \pi_{2py}^2, \sigma_{2p_z}^2. \]
\[ \text{B.O.} = \frac{10 - 4}{2} = 3. \]
{H$_2$:} \[ (2e^-) : \sigma_{1s}^2. \]
\[ \text{B.O.} = \frac{2 - 0}{2} = 1. \]
Molecules with bond order 2: C$_2$ and O$_2$.
Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the INCORRECT statement(s) is (are):
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: