Paramagnetism arises due to the presence of unpaired electrons in a molecule. Let’s analyze each molecule's electronic configuration to determine the number of paramagnetic molecules:
- O\(_2\) (Oxygen): Oxygen molecule has a total of 16 electrons. According to molecular orbital theory, the electronic configuration for O\(_2\) is: \[ (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p_x})^1 (\pi_{2p_y})^1 (\pi_{2p_x}^*)^0 (\pi_{2p_y}^*)^0 \] This shows that there are 2 unpaired electrons, making O\(_2\) paramagnetic.
- N\(_2\) (Nitrogen): Nitrogen molecule has a total of 14 electrons. Its molecular orbital configuration is: \[ (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 \] All electrons are paired in N\(_2\), so it is diamagnetic.
- F\(_2\) (Fluorine): Fluorine molecule has a total of 18 electrons. The electronic configuration is: \[ (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\pi_{2p_x}^*)^1 (\pi_{2p_y}^*)^1 \] This configuration shows 2 unpaired electrons, making F\(_2\) paramagnetic.
- B\(_2\) (Boron): Boron molecule has a total of 10 electrons. Its electronic configuration is: \[ (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p_x})^1 (\pi_{2p_y})^1 \] This configuration shows 2 unpaired electrons, making B\(_2\) paramagnetic.
- Cl\(_2\) (Chlorine): Chlorine molecule has a total of 18 electrons. The electronic configuration is: \[ (\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\pi_{2p_x}^*)^1 (\pi_{2p_y}^*)^1 \] This configuration shows 2 unpaired electrons, making Cl\(_2\) paramagnetic. Thus, the paramagnetic molecules are O\(_2\), F\(_2\), and B\(_2\). Therefore, the number of paramagnetic molecules is 3.
Which of the following statement is true with respect to H\(_2\)O, NH\(_3\) and CH\(_4\)?
(A) The central atoms of all the molecules are sp\(^3\) hybridized.
(B) The H–O–H, H–N–H and H–C–H angles in the above molecules are 104.5°, 107.5° and 109.5° respectively.
(C) The increasing order of dipole moment is CH\(_4\)<NH\(_3\)<H\(_2\)O.
(D) Both H\(_2\)O and NH\(_3\) are Lewis acids and CH\(_4\) is a Lewis base.
(E) A solution of NH\(_3\) in H\(_2\)O is basic. In this solution NH\(_3\) and H\(_2\)O act as Lowry-Bronsted acid and base respectively.
Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the INCORRECT statement(s) is (are):
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).