Friedel-Crafts reactions require an aromatic compound and an electrophile, facilitated by a Lewis acid catalyst (e.g., AlCl$_3$). However,
certain compounds cannot undergo Friedel-Crafts reactions due to deactivating groups or coordination issues with the catalyst.
Toluene, xylene, and cumene: These are activated aromatic compounds and can undergo Friedel-Crafts reactions.
Chlorobenzene: Chlorine is an electron-withdrawing group but is ortho/para-directing; hence it can still undergo Friedel-Crafts reactions.
Nitrobenzene, m-nitroaniline, m-dinitrobenzene: Nitro groups are strongly deactivating, making the aromatic ring unreactive for Friedel-Crafts reactions.
Aniline: The amino group ($-\text{NH}_2$) coordinates with the Lewis acid catalyst (AlCl$_3$), deactivating the ring.
Compounds that cannot undergo Friedel-Crafts reactions:
Nitrobenzene, aniline, m-nitroaniline, m-dinitrobenzene (4 compounds).
Final Answer: (4)
Complete the following equation :
Write the products of the following reactions:
Predict the major product $ P $ in the following sequence of reactions:
(i) HBr, benzoyl peroxide
(ii) KCN
(iii) Na(Hg), $C_{2}H_{5}OH$