Nucleus A is having mass number 220 and its binding energy per nucleon is 5.6 MeV. It splits in two fragments ‘B’ and ‘C’ of mass numbers 105 and 115. The binding energy of nucleons in ‘B’ and ‘C’ is 6.4 MeV per nucleon. The energy Q released per fission will be :
220A → 105B+115C
⇒ Q = [105 × 6.4 + 115×6.4] – [220 × 5.6] MeV
⇒ Q = 176 MeV
The correct option is (D) : 176 MeV
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given:
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons
‘R’ represents the radius of the nucleus. R = RoA1/3
Where,
The mass number (A), also known as the nucleon number, is the total number of neutrons and protons in a nucleus.
A = Z + N
Where, N is the neutron number, A is the mass number, Z is the proton number
Mass defect is the difference between the sum of masses of the nucleons (neutrons + protons) constituting a nucleus and the rest mass of the nucleus and is given as:
Δm = Zmp + (A - Z) mn - M
Where Z = atomic number, A = mass number, mp = mass of 1 proton, mn = mass of 1 neutron and M = mass of nucleus.