Negation of the Boolean expression \( p \Leftrightarrow (q \Rightarrow p) \) is:
Show Hint
To negate a biconditional expression, use the fact that \( p \Leftrightarrow q \) is true if and only if both \( p \) and \( q \) have the same truth value. The negation is the case where the truth values differ.
Step 1:
We are given the expression \( p \Leftrightarrow (q \Rightarrow p) \), and we need to find its negation.
Recall that the biconditional \( p \Leftrightarrow q \) is true if both \( p \) and \( q \) have the same truth value. This can be rewritten as:
\[
p \Leftrightarrow (q \Rightarrow p) \equiv (p \Rightarrow (q \Rightarrow p)) \land ((q \Rightarrow p) \Rightarrow p).
\]
However, to simplify:
- The expression \( q \Rightarrow p \) is equivalent to \( \sim q \lor p \).
Thus, the expression becomes:
\[
p \Leftrightarrow (\sim q \lor p).
\]
Next, we negate the biconditional. The negation of \( p \Leftrightarrow (\sim q \lor p) \) is:
\[
\sim (p \Leftrightarrow (\sim q \lor p)) = (\sim p) \land (\sim (\sim q \lor p)).
\]
Now, simplify:
\[
\sim (\sim q \lor p) = q \land \sim p.
\]
So, the negation of the given expression is:
\[
(\sim p) \land (\sim q).
\]