Molality ($m$) of urea is given as 4.44 $m$, meaning 4.44 moles of urea are dissolved in 1000 g of water.
Step 1: Mole fraction formula
\[ X_{\text{urea}} = \frac{\text{Moles of urea}}{\text{Moles of urea} + \text{Moles of water}} \]
Step 2: Calculate moles of water
\[ \text{Mass of water} = 1000 \, \text{g}, \quad \text{Molar mass of water} = 18 \, \text{g/mol}. \] \[ \text{Moles of water} = \frac{1000}{18} = 55.56. \]
Step 3: Substitute values into the mole fraction formula
\[ X_{\text{urea}} = \frac{4.44}{4.44 + 55.56}. \] \[ X_{\text{urea}} = \frac{4.44}{60.00} = 0.0740. \]
Step 4: Express mole fraction as $x \times 10^{-3}$
\[ X_{\text{urea}} = 74 \times 10^{-3}. \] \[ x = 74. \]
Final Answer: 74
Which of the following properties will change when system containing solution 1 will become solution 2 ?
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-6}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to