For a 3 M solution, 3 moles of NaCl are present in 1 liter of solution.
The formula for molality \( m \) is:
\[ \text{molality} = \frac{\text{moles of solute} \times 1000}{\text{mass of solvent in grams}} \]
Calculate the mass of the solution:
\[ \text{Mass of solution} = \text{Density} \times \text{Volume} = 1.25 \times 1000 = 1250 \, \text{g} \]
Now, calculate the mass of solute (NaCl):
\[ \text{Mass of solute} = \text{moles} \times \text{molar mass} = 3 \times 58.5 = 175.5 \, \text{g} \]
Therefore, the mass of the solvent (water) is:
\[ \text{Mass of solvent} = 1250 - 175.5 = 1074.5 \, \text{g} \]
Substitute the values to find molality:
\[ \text{molality} = \frac{3 \times 1000}{1074.5} = 2.79 \, m \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)