To find the molality \(m\) of a 3 M aqueous solution of NaCl, we'll use the relationship between molality and molarity. Here is the step-by-step process:
\(m = \frac{\text{moles of solute}}{\text{mass of solvent in kg}}\)
Thus, the molality of the solution is \(2.79\, \text{m}\).
For a 3 M solution, 3 moles of NaCl are present in 1 liter of solution.
The formula for molality \( m \) is:
\[ \text{molality} = \frac{\text{moles of solute} \times 1000}{\text{mass of solvent in grams}} \]
Calculate the mass of the solution:
\[ \text{Mass of solution} = \text{Density} \times \text{Volume} = 1.25 \times 1000 = 1250 \, \text{g} \]
Now, calculate the mass of solute (NaCl):
\[ \text{Mass of solute} = \text{moles} \times \text{molar mass} = 3 \times 58.5 = 175.5 \, \text{g} \]
Therefore, the mass of the solvent (water) is:
\[ \text{Mass of solvent} = 1250 - 175.5 = 1074.5 \, \text{g} \]
Substitute the values to find molality:
\[ \text{molality} = \frac{3 \times 1000}{1074.5} = 2.79 \, m \]
0.1 mole of compound S will weigh ...... g, (given the molar mass in g mol\(^{-1}\) C = 12, H = 1, O = 16) 
Among $ 10^{-10} $ g (each) of the following elements, which one will have the highest number of atoms?
Element : Pb, Po, Pr and Pt
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
