Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Monocyclic compounds $ P, Q, R $ and $ S $ are the major products formed in the reaction sequences given below.
The product having the highest number of unsaturated carbon atom(s) is:
Heinrich Kayser, the German physicist was the first to coin the term adsorption. Adsorption can be explained as a surface phenomenon where particles remain attached on the top of a material. Generally, it comprises the molecules, atoms, liquid, solid in a dissolved stage, even the ions of a gas that are attached to the surface. Much to our surprise, the consequence of surface energy i.e. adsorption is present in biological, physical, chemical, and natural systems and are used in many industrial applications.
