Adsorption obeys Freundlich isotherm, which can be written as:
\[
x/m = k C^{1/n}
\]
where,
\( x/m \) = amount adsorbed per unit mass of adsorbent (mg/g),
\( C \) = equilibrium concentration of adsorbate in solution (mg/L or mg/g),
\( k \), \( n \) = constants depending on temperature and adsorbate-adsorbent system.
Given data:
\[
\begin{cases}
C_1 = 10 \text{ mg/g}, & (x/m)_1 = 4 \text{ mg/g} \\
C_2 = 16 \text{ mg/g}, & (x/m)_2 = 10 \text{ mg/g}
\end{cases}
\]
From Freundlich isotherm, for the two points:
\[
(x/m)_1 = k C_1^{1/n} \quad \Rightarrow \quad 4 = k \times 10^{1/n}
\]
\[
(x/m)_2 = k C_2^{1/n} \quad \Rightarrow \quad 10 = k \times 16^{1/n}
\]
Dividing the two equations to eliminate \(k\):
\[
\frac{10}{4} = \frac{16^{1/n}}{10^{1/n}} = \left(\frac{16}{10}\right)^{1/n} = \left(\frac{8}{5}\right)^{1/n}
\]
Taking logarithm base 10 on both sides:
\[
\log_{10}\left(\frac{10}{4}\right) = \frac{1}{n} \log_{10}\left(\frac{8}{5}\right)
\]
Calculate the logs:
\[
\log_{10} \frac{10}{4} = \log_{10} 2.5 = \log_{10}(5/2) = \log_{10} 5 - \log_{10} 2
\]
Using \(\log_{10} 2 = 0.3\) and \(\log_{10} 5 = \log_{10}(10/2) = 1 - 0.3 = 0.7\), so:
\[
\log_{10} 2.5 = 0.7 - 0.3 = 0.4
\]
Similarly,
\[
\log_{10} \frac{8}{5} = \log_{10} 8 - \log_{10} 5
\]
\[
\log_{10} 8 = \log_{10}(2^3) = 3 \times 0.3 = 0.9
\]
\[
\log_{10} 5 = 0.7
\]
\[
\log_{10} \frac{8}{5} = 0.9 - 0.7 = 0.2
\]
So,
\[
0.4 = \frac{1}{n} \times 0.2 \quad \Rightarrow \quad \frac{1}{n} = \frac{0.4}{0.2} = 2
\]
\[
\therefore n = \frac{1}{2} = 0.5
\]
Now, find \(k\) using one of the points, say \(C_1=10\), \((x/m)_1=4\):
\[
4 = k \times 10^{1/n} = k \times 10^{2} = k \times 100
\]
\[
k = \frac{4}{100} = 0.04
\]
We are asked to find adsorbed amount \(x/m\) when \(C = 20\) mg/g:
\[
x/m = k C^{1/n} = 0.04 \times 20^{2} = 0.04 \times 400 = 16 \text{ mg/g}
\]
% Final answer
Answer: \(\boxed{16 \text{ mg/g}}\)