Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. PF5 | I. dsp2 |
B. SF6 | II. sp3d |
C. Ni(CO)4 | III. sp3d2 |
D. [PtCl4]2- | IV. sp3 |
Choose the correct answer from the options given below:
PF5:
5σ + 0 lone pair ⇒ sp3d hybridisation
SF6:
6σ + 0 lone pair ⇒ sp3d2 hybridisation
Ni(CO)4:
Ni oxidation state = 0
In presence of ligand field:
Ni(0): [Ar] ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ _ _ _ _
Orbitals: 3d, 4s, 4p
⇒ sp3 hybridisation
[PtCl4]2-:
Pt oxidation state = +2
In presence of ligand field:
Pt2+: [Kr] ↑↓ ↑↓ ↑↓ ↑↓ _ _ _
Orbitals: 5d, 6s, 6p
⇒ dsp2 hybridisation
Given below are two statements:
Statement I : The N-N single bond is weaker and longer than that of P-P single bond
Statement II : Compounds of group 15 elements in +3 oxidation states readily undergo disproportionation reactions.
In the light of above statements, choose the correct answer from the options given below
Match the LIST-I with LIST-II.
Choose the correct answer from the options given below :
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to