(A) \(\sinh x\).
- Domain of \(\sinh x\) is all real numbers, and \(\sinh x\) is an \emph{odd} function.
- Its range is \(\mathbb{R}\).
Hence it matches (IV)\;(\text{Range}={R},\;\text{odd function}).
(B) \(\sec x\).
- \(\sec x = \frac{1}{\cos x}\). Since \(\cos(-x)=\cos x\), we get \(\sec(-x)=\sec x\), so \(\sec x\) is \emph{even}.
Hence it matches (III)\;(\text{Even function}).
(C) \(\tanh x\).
- Domain of \(\tanh x\) is all real numbers, and it is an \emph{odd} function.
- Its range is \((-1,1)\).
Hence it matches (V)\;(\text{Range}=(-1,1),\;\text{odd function}).
(D) \(\mathrm{cosech}^{-1} x\).
- The real inverse hyperbolic cosecant has domain \(\lvert x\rvert \ge 1\), i.e.\([\,1,\infty)\cup(-\infty,-1\,]\) for real values, and it is \emph{neither} even nor odd.
- Focusing on the principal branch often yields domain \([\,1,\infty)\).
Hence it matches (II)\;(\text{Domain}=[\,1,\infty),\;\text{neither even nor odd function}).
Therefore the correct mapping is:
\[
A \to (IV),\quad B \to (III),\quad C \to (V),\quad D \to (II).
\]