List I Coordination Complex | List II Number of unpaired electrons |
---|---|
(I) [Cr(CN)6]3- | (a) 0 |
(II) [Fe(H2O)6]2+ | (b) 3 |
(III) [Co(NH3)6]3+ | (c) 2 |
(IV) [Ni(NH3)6]2+ | (d) 4 |
To determine the number of unpaired electrons in coordination complexes, consider the oxidation state of the central metal atom, its electronic configuration, and whether the ligand is a strong or weak field ligand
Final Matching: A-II, B-IV, C-I, D-III
The correct answer is option (1).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: