| List I | List II | ||
| A | Spring constant | I | (T-1) |
| B | Angular speed | II | (MT-2) |
| C | Angular momentum | III | (ML2) |
| D | Moment of Inertia | IV | (ML2T-1) |
Solution:
Spring constant:
The spring constant \( K \) is given by:
\[
[K] = \frac{[F]}{[x]} = \frac{MLT^{-2}}{L} = MT^{-2}
\]
Thus, spring constant has units of \( \boxed{MT^{-2}} \), which corresponds to List II.
Angular speed:
The angular speed \( \omega \) has dimensions:
\[
[\omega] = \frac{[\theta]}{[t]} = \frac{1}{T} = T^{-1}
\]
Thus, angular speed has dimensions \( \boxed{T^{-1}} \), corresponding to List I.
Angular momentum:
Angular momentum \( L \) is given by:
\[
[L] = [M][L][V] = ML^2T^{-1}
\]
Thus, Angular momentum has dimensions \( \boxed{ML^2T^{-1}} \), corresponding to List III.
Moment of inertia:
The moment of inertia \( I \) is:
\[
[I] = [M][L]^2 = ML^2
\]
Thus, moment of inertia has dimensions \( \boxed{ML^2} \), corresponding to List IV.
Thus, the correct match is \( A-II, B-I, C-III, D-IV \).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.