List I | List II | ||
A | Spring constant | I | (T-1) |
B | Angular speed | II | (MT-2) |
C | Angular momentum | III | (ML2) |
D | Moment of Inertia | IV | (ML2T-1) |
Solution:
Spring constant:
The spring constant \( K \) is given by:
\[
[K] = \frac{[F]}{[x]} = \frac{MLT^{-2}}{L} = MT^{-2}
\]
Thus, spring constant has units of \( \boxed{MT^{-2}} \), which corresponds to List II.
Angular speed:
The angular speed \( \omega \) has dimensions:
\[
[\omega] = \frac{[\theta]}{[t]} = \frac{1}{T} = T^{-1}
\]
Thus, angular speed has dimensions \( \boxed{T^{-1}} \), corresponding to List I.
Angular momentum:
Angular momentum \( L \) is given by:
\[
[L] = [M][L][V] = ML^2T^{-1}
\]
Thus, Angular momentum has dimensions \( \boxed{ML^2T^{-1}} \), corresponding to List III.
Moment of inertia:
The moment of inertia \( I \) is:
\[
[I] = [M][L]^2 = ML^2
\]
Thus, moment of inertia has dimensions \( \boxed{ML^2} \), corresponding to List IV.
Thus, the correct match is \( A-II, B-I, C-III, D-IV \).
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
A wire of 60 cm length and mass 10 g is suspended by a pair of flexible leads in a magnetic field of 0.60 T as shown in the figure. The magnitude of the current required to remove the tension in the supporting leads is:
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is: