
Step 1: Understanding the question.
We are given two lists — List I contains physical quantities, and List II contains their corresponding dimensional formulas. We need to correctly match each quantity with its respective dimensional formula.
| List - I | List - II |
|---|---|
| (A) Angular Impulse | (IV) \( ML^2T^{-1} \) |
| (B) Latent Heat | (I) \( M^0L^2T^{-2} \) |
| (C) Electrical Resistivity | (III) \( ML^3T^{-3}A^{-2} \) |
| (D) Electromotive Force (EMF) | (II) \( ML^2T^{-3}A^{-1} \) |
Final Matching:
(A)-(IV), (B)-(I), (C)-(III), (D)-(II) Step 2: Recall the dimensional formulas.
- (A) Angular Impulse:
Angular Impulse = Change in Angular Momentum.
Dimensional formula of Angular Momentum = \( ML^2T^{-1} \).
Hence, Angular Impulse → \( ML^2T^{-1} \) → (IV).
- (B) Latent Heat:
Latent Heat = Energy / Mass.
Energy has the dimension \( ML^2T^{-2} \), so Latent Heat → \( M^0L^2T^{-2} \) → (I).
- (C) Electrical Resistivity:
Resistivity = Resistance × (Area / Length).
Resistance \( R = \frac{V}{I} \) and \( V = Work / Charge = (ML^2T^{-2}) / (AT) = ML^2T^{-3}A^{-1} \).
Thus, Resistance → \( ML^2T^{-3}A^{-2} \).
Multiplying by Area/Length → \( L^3T^{-3}A^{-2} \).
Hence, Resistivity → \( ML^3T^{-3}A^{-2} \) → (III).
- (D) Electromotive Force (EMF):
EMF is the potential difference; its dimensional formula is the same as that of voltage → \( ML^2T^{-3}A^{-1} \) → (II).
Step 3: Correct matching.
(A) Angular Impulse → (IV) \( ML^2T^{-1} \)
(B) Latent Heat → (I) \( M^0L^2T^{-2} \)
(C) Electrical Resistivity → (III) \( ML^3T^{-3}A^{-2} \)
(D) Electromotive Force → (II) \( ML^2T^{-3}A^{-1} \)
Final Answer:
\[ \boxed{(A)-(IV), (B)-(I), (C)-(III), (D)-(II)} \]
Match List-I with List-II.
Choose the correct answer from the options given below :
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: