To find the dimensions of \( (\mu \epsilon)^{-1} \), we first need to understand the dimensions of permittivity (\( \epsilon \)) and permeability (\( \mu \)) in a medium.
Step 1: Identify the formulas for permittivity and permeability:
\[ \epsilon = \frac{1}{\mu_0 c^2}, \quad \mu = \frac{1}{\epsilon_0 c^2} \]
Step 2: Determine the dimensions of permittivity:
\[ [\epsilon] = [M^{-1} L^{-3} T^4 A^2] \]
Step 3: Determine the dimensions of permeability:
\[ [\mu] = [M L T^{-2} A^{-2}] \]
Step 4: Calculate the dimensions of the product \( \mu \epsilon \):
\[ [\mu \epsilon] = [M L T^{-2} A^{-2}] \times [M^{-1} L^{-3} T^4 A^2] = [M^0 L^{-2} T^2 A^0] \]
Step 5: Find the dimensions of \( (\mu \epsilon)^{-1} \):
\[ (\mu \epsilon)^{-1} = [M^0 L^2 T^{-2} A^0] = [L^2 T^{-2}] \]
Final Answer: The dimensions of \( (\mu \epsilon)^{-1} \) are:
\[ [L^2 T^{-2}] \]
Match the LIST-I with LIST-II: 
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II 
Choose the correct answer from the options given below:
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: