The equation of line \( L_1 \) is: \( \frac{x-1}{0} = \frac{y-2}{0} = \frac{z-3}{1} \)
The equation of line \( L_2 \) is: \( \frac{x-\lambda}{0} = \frac{y-5}{1} = \frac{z-6}{0} \)
The shortest distance (SD) between the lines is given by: \( SD = \frac{ \begin{vmatrix} \lambda - 1 & 5 - 2 & 6 - 3 0 & 0 & 1 \\ 0 & 1 & 0\end{vmatrix} }{ \sqrt{0^2 + 1^2 + 0^2} } \)
\( SD = \begin{vmatrix} \lambda - 1 & 3 & 3 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \)
\( SD = |\lambda - 1| \)
Given SD = 3, we have: \( |\lambda - 1| = 3 \) \( \lambda - 1 = \pm 3 \) \( \lambda = 4, -2 \)
Since \( \lambda_2<\lambda_1 \), we have: \( \lambda_1 = 4 \) \( \lambda_2 = -2 \) The point is \( P(4, -2, 7) \).
Let Q be the foot of the perpendicular from P to \( L_1 \). Q is of the form \( (1, 2, 3+t) \).
The direction vector of PQ is \( (1-4, 2-(-2), 3+t-7) = (-3, 4, t-4) \).
The direction vector of \( L_1 \) is \( (0, 0, 1) \).
Since PQ is perpendicular to \( L_1 \), their dot product is 0. \( (-3, 4, t-4) \cdot (0, 0, 1) = 0 \) \( t-4 = 0 \) \( t = 4 \) So, Q is \( (1, 2, 7) \).
Now, \( PQ^2 = (4-1)^2 + (-2-2)^2 + (7-7)^2 \) \( PQ^2 = 3^2 + (-4)^2 + 0^2 \) \( PQ^2 = 9 + 16 = 25 \)
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to