The equation of line \( L_1 \) is: \( \frac{x-1}{0} = \frac{y-2}{0} = \frac{z-3}{1} \)
The equation of line \( L_2 \) is: \( \frac{x-\lambda}{0} = \frac{y-5}{1} = \frac{z-6}{0} \)
The shortest distance (SD) between the lines is given by: \( SD = \frac{ \begin{vmatrix} \lambda - 1 & 5 - 2 & 6 - 3 0 & 0 & 1 \\ 0 & 1 & 0\end{vmatrix} }{ \sqrt{0^2 + 1^2 + 0^2} } \)
\( SD = \begin{vmatrix} \lambda - 1 & 3 & 3 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \)
\( SD = |\lambda - 1| \)
Given SD = 3, we have: \( |\lambda - 1| = 3 \) \( \lambda - 1 = \pm 3 \) \( \lambda = 4, -2 \)
Since \( \lambda_2<\lambda_1 \), we have: \( \lambda_1 = 4 \) \( \lambda_2 = -2 \) The point is \( P(4, -2, 7) \).
Let Q be the foot of the perpendicular from P to \( L_1 \). Q is of the form \( (1, 2, 3+t) \).
The direction vector of PQ is \( (1-4, 2-(-2), 3+t-7) = (-3, 4, t-4) \).
The direction vector of \( L_1 \) is \( (0, 0, 1) \).
Since PQ is perpendicular to \( L_1 \), their dot product is 0. \( (-3, 4, t-4) \cdot (0, 0, 1) = 0 \) \( t-4 = 0 \) \( t = 4 \) So, Q is \( (1, 2, 7) \).
Now, \( PQ^2 = (4-1)^2 + (-2-2)^2 + (7-7)^2 \) \( PQ^2 = 3^2 + (-4)^2 + 0^2 \) \( PQ^2 = 9 + 16 = 25 \)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).