\( \lim_{x \to 0} \frac{x \cdot \cot(4x)}{\sin(2x) \cdot \cot^2(2x)} = ? \)
Given Limit:
We are tasked with solving the following limit:
\[
\lim_{x \to 0} \frac{x \cdot \cot(4x)}{\sin(2x) \cdot \cot^2(2x)}
\]
Step 1: Express Trigonometric Functions in Terms of Sine and Cosine:
Recall that:
\[
\cot(x) = \frac{\cos(x)}{\sin(x)}
\]
So, we can rewrite the limit as:
\[
\lim_{x \to 0} \frac{x \cdot \frac{\cos(4x)}{\sin(4x)}}{\sin(2x) \cdot \left( \frac{\cos(2x)}{\sin(2x)} \right)^2}
\]
Step 2: Simplify the Expression:
Simplify the denominator and the trigonometric expressions:
\[
\lim_{x \to 0} \frac{x \cdot \cos(4x)}{\sin(4x)} \cdot \frac{\sin^2(2x)}{\cos^2(2x) \cdot \sin(2x)}
\]
\[
= \lim_{x \to 0} \frac{x \cdot \cos(4x) \cdot \sin(2x)}{\sin(4x) \cdot \cos^2(2x)}
\]
Step 3: Apply Small Angle Approximations:
As \( x \to 0 \), we can use the approximations \( \sin(x) \approx x \) and \( \cos(x) \approx 1 \). Using these approximations:
\[
\sin(4x) \approx 4x, \quad \sin(2x) \approx 2x, \quad \cos(4x) \approx 1, \quad \cos(2x) \approx 1
\]
Substituting these into the expression:
\[
\lim_{x \to 0} \frac{x \cdot 1 \cdot 2x}{4x \cdot 1^2} = \lim_{x \to 0} \frac{2x^2}{4x} = \lim_{x \to 0} \frac{2x}{4} = \frac{1}{2}
\]
Final Answer:
Therefore, the value of the limit is:
\[
\lim_{x \to 0} \frac{x \cdot \cot(4x)}{\sin(2x) \cdot \cot^2(2x)} = 1
\]
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.
A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.
Read More: Limits and Derivatives