Concept:
The given conditions represent two circles in the Argand plane.
If two circles with equal radii touch externally, the point of contact is the midpoint of their centers.
Step 1: Identify the centers of the circles
\[
|z-6|=5 \Rightarrow \text{Center } C_1=(6,0)
\]
\[
|z+2-6i|=5 \Rightarrow \text{Center } C_2=(-2,6)
\]
Distance between centers:
\[
\sqrt{(6+2)^2+(0-6)^2}=\sqrt{64+36}=10
\]
Since distance \(=\) sum of radii, the circles touch externally.
Step 2: Find the point of contact
\[
z=\left(\frac{6+(-2)}{2},\frac{0+6}{2}\right)=(2,3)
\Rightarrow z=2+3i
\]
Step 3: Evaluate the given expression
\[
z^2=(2+3i)^2=-5+12i
\]
\[
z^3=(2+3i)(-5+12i)=-46+9i
\]
\[
z^3+3z^2-15z+14
=(-46+9i)+3(-5+12i)-15(2+3i)+14
\]
\[
=(-46-15-30+14)+(9+36-45)i
=37
\]