If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
For a non-zero complex number $ z $, let $\arg(z)$ denote the principal argument of $ z $, with $-\pi < \arg(z) \leq \pi$. Let $\omega$ be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let $$ \alpha = \arg \left( \sum_{n=1}^{2025} (-\omega)^n \right). $$ Then the value of $\frac{3 \alpha}{\pi}$ is _____.

