Concept:
To solve equations involving a complex number and its conjugate, write
\[
z = x + iy \quad \text{and} \quad \bar{z} = x - iy
\]
and equate real and imaginary parts separately.
Also,
\[
|z|^2 = x^2 + y^2
\]
Step 1: Substitute \( z = x + iy \) in the given equation.
\[
4z^2 + \bar{z} = 0
\]
\[
4(x+iy)^2 + (x-iy) = 0
\]
Step 2: Simplify and separate real and imaginary parts.
\[
4(x^2 - y^2 + 2ixy) + x - iy = 0
\]
Real part:
\[
4(x^2 - y^2) + x = 0 \quad \cdots (1)
\]
Imaginary part:
\[
8xy - y = 0
\]
\[
y(8x - 1) = 0 \quad \cdots (2)
\]
Step 3: Solve the cases from equation (2).
Case 1: \( y = 0 \)
From (1):
\[
4x^2 + x = 0
\]
\[
x(4x + 1) = 0
\]
\[
x = 0 \quad \text{or} \quad x = -\frac{1}{4}
\]
Thus,
\[
z = 0,\; -\frac{1}{4}
\]
Case 2: \( 8x - 1 = 0 \Rightarrow x = \frac{1}{8} \)
Substitute in (1):
\[
4\left(\frac{1}{64} - y^2\right) + \frac{1}{8} = 0
\]
\[
\frac{1}{16} + \frac{1}{8} - 4y^2 = 0
\]
\[
\frac{3}{16} = 4y^2
\]
\[
y^2 = \frac{3}{64}
\]
\[
y = \pm \frac{\sqrt{3}}{8}
\]
Thus,
\[
z = \frac{1}{8} \pm i\frac{\sqrt{3}}{8}
\]
Step 4: Compute \( \sum |z_i|^2 \).
\[
|0|^2 = 0
\]
\[
\left|-\frac{1}{4}\right|^2 = \frac{1}{16}
\]
\[
\left|\frac{1}{8} \pm i\frac{\sqrt{3}}{8}\right|^2
= \frac{1}{64} + \frac{3}{64} = \frac{1}{16}
\]
There are two such roots.
\[
\sum |z_i|^2 = 0 + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}
= \frac{3}{16}
\]
\[
\boxed{\sum_{i=1}^{n} |z_i|^2 = \frac{3}{16}}
\]