Concept:
Represent a complex number as $z = x + iy$.
A complex equation can be converted into a real equation representing a straight line or curve.
The region $|z-a| \le r$ represents a circle of radius $r$ centered at $a$.
Step 1: Let
\[
z = x + iy
\]
Then,
\[
z(1+i) + z(1-i) = (x+iy)(1+i) + (x+iy)(1-i)
\]
Step 2: Simplify:
\[
(x+iy)(1+i) = (x-y) + i(x+y)
\]
\[
(x+iy)(1-i) = (x+y) + i(y-x)
\]
Adding,
\[
z(1+i) + z(1-i) = 2x + 2iy
\]
Given equation:
\[
2x + 2iy = 4
\Rightarrow x = 2
\]
Thus, the curve is the straight line:
\[
x = 2
\]
Step 3: Region $|z-3| \le 1$ represents the circle:
\[
(x-3)^2 + y^2 \le 1
\]
This is a circle of radius $1$ centered at $(3,0)$.
Step 4: The line $x=2$ cuts the circle, forming a chord.
Distance of the line from center:
\[
d = |3 - 2| = 1
\]
Step 5: Area of the circular segment:
\[
\alpha = \frac{1}{2}r^2(\theta - \sin\theta)
\]
Here,
\[
\cos\left(\frac{\theta}{2}\right) = \frac{d}{r} = 1
\Rightarrow \theta = \frac{\pi}{3}
\]
Step 6: Area difference:
\[
|\alpha - \beta| = \text{Area of circle} - 2\alpha
\]
\[
= \pi - \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)
\]
\[
|\alpha - \beta| = 1 + \frac{\pi}{6}
\]