Step 1: Interpret the first modulus equation.
\[
\left| \frac{z - 6i}{z - 2i} \right| = 1 \Rightarrow |z - 6i| = |z - 2i|
\]
This represents the locus of points equidistant from $6i$ and $2i$, which is the perpendicular bisector of the line joining these points.
Hence,
\[
\text{Im}(z) = 4
\]
Step 2: Interpret the second modulus equation.
\[
\left| \frac{z - (8 - 2i)}{z + 2i} \right| = \frac{3}{5}
\Rightarrow |z - (8 - 2i)| = \frac{3}{5}|z + 2i|
\]
This represents a circle (Apollonius circle).
Let $z = x + iy$ and substitute $y = 4$:
\[
|(x + 4i) - (8 - 2i)| = \frac{3}{5}|(x + 4i) + 2i|
\]
\[
\sqrt{(x - 8)^2 + 6^2} = \frac{3}{5}\sqrt{x^2 + 6^2}
\]
Step 3: Solve the equation.
Squaring both sides:
\[
(x - 8)^2 + 36 = \frac{9}{25}(x^2 + 36)
\]
\[
25(x - 8)^2 + 900 = 9x^2 + 324
\]
\[
16x^2 - 400x + 2176 = 0
\]
\[
x = 8, \; 17
\]
Step 4: Compute $\sum |z|^2$.
For $z_1 = 8 + 4i$:
\[
|z_1|^2 = 8^2 + 4^2 = 80
\]
For $z_2 = 17 + 4i$:
\[
|z_2|^2 = 17^2 + 4^2 = 305
\]
\[
\sum |z|^2 = 80 + 305 = 385
\]