Step 1: Recognize the distribution.
$Y = Z_1^2 + Z_2^2 \sim \chi^2(2)$, which is equivalent to an exponential distribution with parameter $\lambda = \dfrac{1}{2}$.
Step 2: Use the exponential property.
For an exponential variable with parameter $\lambda$,
\[
P(Y > y) = e^{-\lambda y}.
\]
Here $\lambda = \dfrac{1}{2}$, $y = 4$.
Step 3: Substitute values.
\[
P(Y > 4) = e^{-(1/2) \times 4} = e^{-2}.
\]
Step 4: Conclusion.
\[
\boxed{P(Y > 4) = e^{-2}}.
\]
Let $X$ and $Y$ be independent random variables with respective moment generating functions $M_X(t) = \dfrac{(8 + e^t)^2}{81}$ and $M_Y(t) = \dfrac{(1 + 3e^t)^3}{64}$, $-\infty < t < \infty$. Then $P(X + Y = 1)$ equals .............. (round off to two decimal places).
Consider a sequence of independent Bernoulli trials with probability of success in each trial being $\dfrac{1}{5}$. Then which of the following statements is/are TRUE?