Step 1: Understand the problem and the uniform distribution.
The given distribution is \( U(-\theta, \theta) \), which implies:
\[
f(x; \theta) =
\begin{cases}
\frac{1}{2\theta}, & \text{if } -\theta \leq x \leq \theta, \\
0, & \text{otherwise}.
\end{cases}
\]
The range of the sample, defined by \( X_{(1)} = \min(X_1, X_2, \ldots, X_{10}) \) and \( X_{(10)} = \max(X_1, X_2, \ldots, X_{10}) \), determines the parameter \( \theta \).
Step 2: Derive the maximum likelihood estimate (MLE) of \( \theta \).
For the uniform distribution \( U(-\theta, \theta) \), the likelihood function based on the observed data is:
\[
L(\theta) = \prod_{i=1}^{10} f(x_i; \theta) =
\begin{cases}
\left(\frac{1}{2\theta}\right)^{10}, & \text{if } -\theta \leq X_{(1)} \text{ and } X_{(10)} \leq \theta, \\
0, & \text{otherwise}.
\end{cases}
\]
To maximize the likelihood function, \( \theta \) must satisfy:
\[
\theta \geq \max(|X_{(1)}|, |X_{(10)}|).
\]
Step 3: Apply the observed values.
From the problem, the observed values are:
\[
X_{(1)} = -10 \quad \text{and} \quad X_{(10)} = 8.
\]
Thus, the maximum likelihood estimate of \( \theta \) is:
\[
\hat{\theta} = \max(|-10|, |8|) = 10.
\]
Conclusion:
The maximum likelihood estimate of \( \theta \) is:
\[
\boxed{10}.
\]