Step 1: Identify the formula for \( h(S) \).
For a 95\% confidence interval based on the \( t \)-distribution, \( h(S) \) is given by:
\[
h(S) = t_{\alpha/2, \, n-1} \cdot \frac{S}{\sqrt{n}},
\]
where:
- \( t_{\alpha/2, \, n-1} \) is the critical value of the \( t \)-distribution for a 95\% confidence level with \( n-1 \) degrees of freedom,
- \( S \) is the sample standard deviation,
- \( n \) is the sample size.
Step 2: Calculate \( S \) from the given variance.
The sample variance is given as \( S^2 = 9.5 \). Thus, the sample standard deviation is:
\[
S = \sqrt{S^2} = \sqrt{9.5} \approx 3.08.
\]
Step 3: Determine the value of \( h(S) \).
The sample size is \( n = 9 \), so the degrees of freedom are \( n-1 = 8 \). For a 95\% confidence level, the critical value is \( t_{0.025, 8} = 2.306 \). Substituting the values:
\[
h(S) = t_{0.025, 8} \cdot \frac{S}{\sqrt{n}} = 2.306 \cdot \frac{3.08}{\sqrt{9}} = 2.306 \cdot \frac{3.08}{3}.
\]
Simplify:
\[
h(S) \approx 2.306 \cdot 1.0267 \approx 2.37.
\]
Step 4: Calculate the width of the confidence interval.
The width of the confidence interval is:
\[
2 \cdot h(S) \approx 2 \cdot 2.37 = 4.74.
\]
Conclusion:
The width of the confidence interval is:
\[
\boxed{4.74}.
\]