Let \( X \) be a random variable having the Poisson distribution with mean \( 1 \). Let \( g: \mathbb{N} \cup \{0\} \to \mathbb{R} \) be defined by \[g(x) = \begin{cases} 1 & \text{if } x \in \{0, 2\} \\ 0 & \text{if } x \notin \{0, 2\} \end{cases}\] Then \( E(g(X)) \) is equal to: