Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \] \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
We are given a first-order linear differential equation \( 2 \cos x \frac{dy}{dx} = \sin 2x - 4y \sin x \). We solve for \( y \) by following standard methods for solving first-order linear differential equations. Rewriting the equation: \[ \frac{dy}{dx} = \frac{\sin 2x - 4y \sin x}{2 \cos x}. \] This is a linear differential equation in the form: \[ \frac{dy}{dx} + P(x) y = Q(x), \] where \( P(x) \) and \( Q(x) \) can be determined by comparing the given equation. Solving this differential equation and applying the initial condition \( y\left( \frac{\pi}{3} \right) = 0 \), we find the value of \( y\left( \frac{\pi}{4} \right) \).
Final Answer: \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) = 4 \).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is