Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \] \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
We are given a first-order linear differential equation \( 2 \cos x \frac{dy}{dx} = \sin 2x - 4y \sin x \). We solve for \( y \) by following standard methods for solving first-order linear differential equations. Rewriting the equation: \[ \frac{dy}{dx} = \frac{\sin 2x - 4y \sin x}{2 \cos x}. \] This is a linear differential equation in the form: \[ \frac{dy}{dx} + P(x) y = Q(x), \] where \( P(x) \) and \( Q(x) \) can be determined by comparing the given equation. Solving this differential equation and applying the initial condition \( y\left( \frac{\pi}{3} \right) = 0 \), we find the value of \( y\left( \frac{\pi}{4} \right) \).
Final Answer: \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) = 4 \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.