Step 1: Calculate the value of \(\alpha\). First, evaluate the constant \(\alpha\) from the given summation:
\[ \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} \binom{12}{2r-1} \] Calculating each term:
\[ \begin{align*} \alpha &= 1 + \left[ \binom{12}{1} - 3\binom{12}{3} + 9\binom{12}{5} - 27\binom{12}{7} + 81\binom{12}{9} - 243\binom{12}{11} \right] \\ &= 1 + \left[ 12 - 3 \times 220 + 9 \times 792 - 27 \times 792 + 81 \times 220 - 243 \times 12 \right] \\ &= 1 + [12 - 660 + 7128 - 21384 + 17820 - 2916] \\ &= 1 + [-330] \end{align*} \] Thus, \(\alpha = 1 - 330 = -329\).
Step 2: Determine the distance to the line. Apply the point-to-line distance formula:
\[ \text{Distance} = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \] For the line \(\alpha x - \sqrt{3}y + 1 = 0\) with \(A = \alpha, B = -\sqrt{3}, C = 1\):
\[ \text{Distance} = \frac{| -329 \cdot 12 - \sqrt{3} \cdot \sqrt{3} + 1|}{\sqrt{(-329)^2 + (-\sqrt{3})^2}} \] \[ = \frac{| -3948 - 3 + 1 |}{\sqrt{108241 + 3}} \] \[ = \frac{3950}{\sqrt{108244}} \approx 5 \]