Step 1: The given differential equation can be simplified and solved by separating variables and integrating. First, isolate \( dy \) and \( dx \) terms to obtain the relation between \( y \) and \( x \).
Step 2: After applying the appropriate integration techniques, such as substitution and integration by parts, we get the general solution for \( y(x) \).
Step 3: Use the initial condition \( y \left( \frac{\pi}{4} \right) = -1 \) to determine the constant of integration.
Step 4: Finally, substitute \( x = \frac{\pi}{6} \) into the solution to get \( y \left( \frac{\pi}{6} \right) \), which evaluates to \( \frac{1}{\log_e (4) - \log_e (3)} \). Thus, the correct answer is (1).
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
