Step 1: The given differential equation can be simplified and solved by separating variables and integrating. First, isolate \( dy \) and \( dx \) terms to obtain the relation between \( y \) and \( x \).
Step 2: After applying the appropriate integration techniques, such as substitution and integration by parts, we get the general solution for \( y(x) \).
Step 3: Use the initial condition \( y \left( \frac{\pi}{4} \right) = -1 \) to determine the constant of integration.
Step 4: Finally, substitute \( x = \frac{\pi}{6} \) into the solution to get \( y \left( \frac{\pi}{6} \right) \), which evaluates to \( \frac{1}{\log_e (4) - \log_e (3)} \). Thus, the correct answer is (1).
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.