The given differential equation is:
\[ \frac{dy}{dx} + \frac{y}{x \ln x} = \frac{3}{2x^2}. \]
Step 1: Find the integrating factor (I.F.)
\[ \text{I.F.} = e^{\int \frac{1}{x \ln x} dx} = e^{\ln(\ln x)} = \ln x. \]
Step 2: Multiply through by I.F.
\[ (\ln x)y = \int \frac{3 \ln x}{2x^2} dx. \]
Step 3: Solve the integral
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \int x^{-2} \ln x dx. \]
Use integration by parts, letting \( u = \ln x \) and \( dv = x^{-2} dx \):
\[ \int \ln x \cdot x^{-2} dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}. \]
Thus:
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right). \]
Step 4: Write the solution
\[ y \ln x = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right) + C. \]
Simplify:
\[ y = -\frac{3 \ln x}{2x \ln x} + \frac{3}{2x \ln x} + \frac{C}{\ln x}. \]
\[ y = -\frac{3}{2x} + \frac{C}{\ln x}. \]
Step 5: Apply the initial condition \( y(e^{-1}) = 0 \)
\[ 0 = -\frac{3}{2e^{-1}} + \frac{C}{\ln(e^{-1})}. \]
\[ 0 = -\frac{3}{2e} + \frac{C}{-1}. \]
\[ C = -\frac{3}{2}e. \]
Step 6: Find \( y(e) \)
\[ y(e) = -\frac{3}{2e} + \frac{-\frac{3}{2}e}{\ln e}. \]
\[ y(e) = -\frac{3}{2e} - \frac{3}{2e} = -\frac{3}{e}. \]
Final Answer: \(-\frac{3}{e}\).