The given differential equation is:
\[ \frac{dy}{dx} + \frac{y}{x \ln x} = \frac{3}{2x^2}. \]
Step 1: Find the integrating factor (I.F.)
\[ \text{I.F.} = e^{\int \frac{1}{x \ln x} dx} = e^{\ln(\ln x)} = \ln x. \]
Step 2: Multiply through by I.F.
\[ (\ln x)y = \int \frac{3 \ln x}{2x^2} dx. \]
Step 3: Solve the integral
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \int x^{-2} \ln x dx. \]
Use integration by parts, letting \( u = \ln x \) and \( dv = x^{-2} dx \):
\[ \int \ln x \cdot x^{-2} dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}. \]
Thus:
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right). \]
Step 4: Write the solution
\[ y \ln x = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right) + C. \]
Simplify:
\[ y = -\frac{3 \ln x}{2x \ln x} + \frac{3}{2x \ln x} + \frac{C}{\ln x}. \]
\[ y = -\frac{3}{2x} + \frac{C}{\ln x}. \]
Step 5: Apply the initial condition \( y(e^{-1}) = 0 \)
\[ 0 = -\frac{3}{2e^{-1}} + \frac{C}{\ln(e^{-1})}. \]
\[ 0 = -\frac{3}{2e} + \frac{C}{-1}. \]
\[ C = -\frac{3}{2}e. \]
Step 6: Find \( y(e) \)
\[ y(e) = -\frac{3}{2e} + \frac{-\frac{3}{2}e}{\ln e}. \]
\[ y(e) = -\frac{3}{2e} - \frac{3}{2e} = -\frac{3}{e}. \]
Final Answer: \(-\frac{3}{e}\).
To solve the given differential equation, we need to find the value of \( y \) at \( x = e \). Given the differential equation:
\(\left( 2x \log_e x \right) \frac{dy}{dx} + 2y = \frac{3}{x} \log_e x\)
We can rearrange it to form a standard linear differential equation in the form of:
\(\frac{dy}{dx} + P(x)y = Q(x)\)
Where:
The integrating factor (IF) is given by:
\(\text{IF} = e^{\int P(x) \, dx} = e^{\int \frac{1}{x \log_e x} \, dx}\)
Let \(u = \log_e x\), then \(\frac{du}{dx} = \frac{1}{x}\), so \(dx = x \, du\).
Thus, the integral becomes:
\(\int \frac{1}{x \log_e x} \, dx = \int \frac{1}{u} \, du = \log_e |u| + C = \log_e |\log_e x| + C\)
Therefore, the integrating factor is:
\(\text{IF} = e^{\log_e |\log_e x|} = |\log_e x|\)
We multiply the entire differential equation by the integrating factor:
\(|\log_e x|\left( \frac{dy}{dx} + \frac{y}{x \log_e x} \right) = \frac{3}{2x^2 (\log_e x)}\)
It simplifies to:
\(\frac{d}{dx}(y|\log_e x|) = \frac{3}{2x^2}\)
Integrating both sides with respect to \(x\):
\(y|\log_e x| = \int \frac{3}{2x^2} \, dx = -\frac{3}{2x} + C\)
Solving for \(y\), we get:
\(y = \frac{-3}{2x|\log_e x|} + \frac{C}{|\log_e x|}\)
Using the initial condition \(y(e^{-1}) = 0\):
\(0 = \frac{-3}{2e^{-1}|\log_e e^{-1}|} + \frac{C}{|\log_e e^{-1}|}\)
Simplifying:
\(0 = \frac{-3}{2\cdot e^{-1} \cdot 1} + \frac{C}{1}\)
The solving for \(C\) gives: \(C = \frac{3}{2e^{-1}}\)
Finally, finding \( y \) at \( x = e \):
\(y(e) = \frac{-3}{2e \cdot 1} + \frac{\frac{3}{2}e}{1} = \frac{-3}{2e} + \frac{3}{2e} = \frac{-3}{e}\)
Thus, the value of \( y(e) \) is \(\frac{-3}{e}\),
Therefore, the correct answer is: \(\frac{-3}{e}\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
