Question:

Let \( y = y(x) \) be the solution of the differential equation \[\left( 2x \log_e x \right) \frac{dy}{dx} + 2y = \frac{3}{x} \log_e x, \, x>0 \, \text{and} \, y(e^{-1}) = 0.\] Then, \( y(e) \) is equal to:

Updated On: Nov 27, 2024
  • \( \frac{3}{2e} \)
  • \( \frac{-2}{3e} \)
  • \( \frac{-3}{e} \)
  • \( \frac{-2}{e} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The given differential equation is:

\[ \frac{dy}{dx} + \frac{y}{x \ln x} = \frac{3}{2x^2}. \]

Step 1: Find the integrating factor (I.F.)

\[ \text{I.F.} = e^{\int \frac{1}{x \ln x} dx} = e^{\ln(\ln x)} = \ln x. \]

Step 2: Multiply through by I.F.

\[ (\ln x)y = \int \frac{3 \ln x}{2x^2} dx. \]

Step 3: Solve the integral

\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \int x^{-2} \ln x dx. \]

Use integration by parts, letting \( u = \ln x \) and \( dv = x^{-2} dx \):

\[ \int \ln x \cdot x^{-2} dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}. \]

Thus:

\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right). \]

Step 4: Write the solution

\[ y \ln x = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right) + C. \]

Simplify:

\[ y = -\frac{3 \ln x}{2x \ln x} + \frac{3}{2x \ln x} + \frac{C}{\ln x}. \]

\[ y = -\frac{3}{2x} + \frac{C}{\ln x}. \]

Step 5: Apply the initial condition \( y(e^{-1}) = 0 \)

\[ 0 = -\frac{3}{2e^{-1}} + \frac{C}{\ln(e^{-1})}. \]

\[ 0 = -\frac{3}{2e} + \frac{C}{-1}. \]

\[ C = -\frac{3}{2}e. \]

Step 6: Find \( y(e) \)

\[ y(e) = -\frac{3}{2e} + \frac{-\frac{3}{2}e}{\ln e}. \]

\[ y(e) = -\frac{3}{2e} - \frac{3}{2e} = -\frac{3}{e}. \]

Final Answer: \(-\frac{3}{e}\).

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions