The given differential equation is:
\[ \frac{dy}{dx} + \frac{y}{x \ln x} = \frac{3}{2x^2}. \]
Step 1: Find the integrating factor (I.F.)
\[ \text{I.F.} = e^{\int \frac{1}{x \ln x} dx} = e^{\ln(\ln x)} = \ln x. \]
Step 2: Multiply through by I.F.
\[ (\ln x)y = \int \frac{3 \ln x}{2x^2} dx. \]
Step 3: Solve the integral
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \int x^{-2} \ln x dx. \]
Use integration by parts, letting \( u = \ln x \) and \( dv = x^{-2} dx \):
\[ \int \ln x \cdot x^{-2} dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}. \]
Thus:
\[ \int \frac{3 \ln x}{2x^2} dx = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right). \]
Step 4: Write the solution
\[ y \ln x = \frac{3}{2} \left( -\frac{\ln x}{x} + \frac{1}{x} \right) + C. \]
Simplify:
\[ y = -\frac{3 \ln x}{2x \ln x} + \frac{3}{2x \ln x} + \frac{C}{\ln x}. \]
\[ y = -\frac{3}{2x} + \frac{C}{\ln x}. \]
Step 5: Apply the initial condition \( y(e^{-1}) = 0 \)
\[ 0 = -\frac{3}{2e^{-1}} + \frac{C}{\ln(e^{-1})}. \]
\[ 0 = -\frac{3}{2e} + \frac{C}{-1}. \]
\[ C = -\frac{3}{2}e. \]
Step 6: Find \( y(e) \)
\[ y(e) = -\frac{3}{2e} + \frac{-\frac{3}{2}e}{\ln e}. \]
\[ y(e) = -\frac{3}{2e} - \frac{3}{2e} = -\frac{3}{e}. \]
Final Answer: \(-\frac{3}{e}\).
To solve the given differential equation, we need to find the value of \( y \) at \( x = e \). Given the differential equation:
\(\left( 2x \log_e x \right) \frac{dy}{dx} + 2y = \frac{3}{x} \log_e x\)
We can rearrange it to form a standard linear differential equation in the form of:
\(\frac{dy}{dx} + P(x)y = Q(x)\)
Where:
The integrating factor (IF) is given by:
\(\text{IF} = e^{\int P(x) \, dx} = e^{\int \frac{1}{x \log_e x} \, dx}\)
Let \(u = \log_e x\), then \(\frac{du}{dx} = \frac{1}{x}\), so \(dx = x \, du\).
Thus, the integral becomes:
\(\int \frac{1}{x \log_e x} \, dx = \int \frac{1}{u} \, du = \log_e |u| + C = \log_e |\log_e x| + C\)
Therefore, the integrating factor is:
\(\text{IF} = e^{\log_e |\log_e x|} = |\log_e x|\)
We multiply the entire differential equation by the integrating factor:
\(|\log_e x|\left( \frac{dy}{dx} + \frac{y}{x \log_e x} \right) = \frac{3}{2x^2 (\log_e x)}\)
It simplifies to:
\(\frac{d}{dx}(y|\log_e x|) = \frac{3}{2x^2}\)
Integrating both sides with respect to \(x\):
\(y|\log_e x| = \int \frac{3}{2x^2} \, dx = -\frac{3}{2x} + C\)
Solving for \(y\), we get:
\(y = \frac{-3}{2x|\log_e x|} + \frac{C}{|\log_e x|}\)
Using the initial condition \(y(e^{-1}) = 0\):
\(0 = \frac{-3}{2e^{-1}|\log_e e^{-1}|} + \frac{C}{|\log_e e^{-1}|}\)
Simplifying:
\(0 = \frac{-3}{2\cdot e^{-1} \cdot 1} + \frac{C}{1}\)
The solving for \(C\) gives: \(C = \frac{3}{2e^{-1}}\)
Finally, finding \( y \) at \( x = e \):
\(y(e) = \frac{-3}{2e \cdot 1} + \frac{\frac{3}{2}e}{1} = \frac{-3}{2e} + \frac{3}{2e} = \frac{-3}{e}\)
Thus, the value of \( y(e) \) is \(\frac{-3}{e}\),
Therefore, the correct answer is: \(\frac{-3}{e}\)
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 