Solution: We start with the differential equation:
\(\sec x \, dy + \{ 2(1 - x) \tan x + x(2 - x) \} \, dx = 0\)
Divide by \(\sec x\) to simplify:
\(\dfrac{dy}{dx} = -\{ 2(1 - x) \sin x + x(2 - x) \cos x \}\)
Integrate both sides:
\(y(x) = - \int \{ 2(1 - x) \sin x + x(2 - x) \cos x \} \, dx + C\)
Separate the integrals:
\(y(x) = - \int 2(1 - x) \sin x \, dx - \int x(2 - x) \cos x \, dx + C\)
Calculate each integral:
\(y(x) = (x^2 - 2x) \sin x + C\)
Using the initial condition \(y(0) = 2\):
\(y(0) = 0 + C \Rightarrow C = 2\)
Thus,
\(y(x) = (x^2 - 2x) \sin x + 2\)
Finally, substituting \(x = 2\):
\(y(2) = (2^2 - 2 \times 2) \sin 2 + 2 = 2\)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :