Solution: We start with the differential equation:
\(\sec x \, dy + \{ 2(1 - x) \tan x + x(2 - x) \} \, dx = 0\)
Divide by \(\sec x\) to simplify:
\(\dfrac{dy}{dx} = -\{ 2(1 - x) \sin x + x(2 - x) \cos x \}\)
Integrate both sides:
\(y(x) = - \int \{ 2(1 - x) \sin x + x(2 - x) \cos x \} \, dx + C\)
Separate the integrals:
\(y(x) = - \int 2(1 - x) \sin x \, dx - \int x(2 - x) \cos x \, dx + C\)
Calculate each integral:
\(y(x) = (x^2 - 2x) \sin x + C\)
Using the initial condition \(y(0) = 2\):
\(y(0) = 0 + C \Rightarrow C = 2\)
Thus,
\(y(x) = (x^2 - 2x) \sin x + 2\)
Finally, substituting \(x = 2\):
\(y(2) = (2^2 - 2 \times 2) \sin 2 + 2 = 2\)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.