To solve the problem, we are going to eliminate the constants \( a \) and \( b \) from the equation:
\( y = ae^{2x} + bxe^{2x} \)
We will find higher derivatives of \( y \) and use them to form a differential equation:
Step 1: Differentiate \( y \) with respect to \( x \).
The first derivative is:
\( y' = \frac{d}{dx}(ae^{2x} + bxe^{2x}) = 2ae^{2x} + b(e^{2x} + 2xe^{2x}) = (2a + b)e^{2x} + 2bxe^{2x} \)
Step 2: Differentiate \( y' \) with respect to \( x \).
The second derivative is:
\( y'' = \frac{d}{dx}((2a + b)e^{2x} + 2bxe^{2x}) = 2(2a + b)e^{2x} + 2b(e^{2x} + 2xe^{2x}) = (4a + 4b)e^{2x} + 4bxe^{2x} \)
Step 3: Differentiate \( y'' \) with respect to \( x \).
The third derivative is:
\( y''' = \frac{d}{dx}((4a + 4b)e^{2x} + 4bxe^{2x}) = 2(4a + 4b)e^{2x} + 4b(e^{2x} + 2xe^{2x}) = (8a + 12b)e^{2x} + 8bxe^{2x} \)
Step 4: Eliminate \( a \) and \( b \).
We have the system of equations:
\( y = ae^{2x} + bxe^{2x} \)
\( y' = (2a + b)e^{2x} + 2bxe^{2x} \)
\( y'' = (4a + 4b)e^{2x} + 4bxe^{2x} \)
\( y''' = (8a + 12b)e^{2x} + 8bxe^{2x} \)
Notice the terms in \( y'''\):
If we substitute and rearrange terms by eliminating \( a \) and \( b \), we arrive at the differential equation for the \( e^{2x} \) terms:
\( y''' - 4y'' + 4y' = 0 \)
Thus, the correct differential equation formed is:
\( y''' - 4y'' + 4y' = 0 \)