Step 1: Given function and differentiation
The given function is:
\[
y = ae^{2x} + bxe^{2x}.
\]
Step 2: First derivative
Differentiating with respect to \( x \):
\[
y' = a(2e^{2x}) + b \left( e^{2x} + 2x e^{2x} \right).
\]
\[
= 2ae^{2x} + b e^{2x} + 2b x e^{2x}.
\]
Step 3: Second derivative
Differentiating again:
\[
y'' = 4ae^{2x} + 2b e^{2x} + 2b e^{2x} + 4b x e^{2x}.
\]
\[
= 4ae^{2x} + 4b e^{2x} + 4b x e^{2x}.
\]
Step 4: Third derivative
Differentiating once more:
\[
y''' = 8ae^{2x} + 8b e^{2x} + 4b e^{2x} + 8b x e^{2x}.
\]
\[
= 8ae^{2x} + 12b e^{2x} + 8b x e^{2x}.
\]
Step 5: Eliminating \( a \) and \( b \)
Using the equations:
\[
y = ae^{2x} + bxe^{2x},
\]
\[
y' = 2ae^{2x} + b e^{2x} + 2b x e^{2x},
\]
\[
y'' = 4ae^{2x} + 4b e^{2x} + 4b x e^{2x},
\]
\[
y''' = 8ae^{2x} + 12b e^{2x} + 8b x e^{2x}.
\]
Solving, we obtain:
\[
y''' - 4y'' + 4y' = 0.
\]
Step 6: Conclusion
Thus, the correct answer is:
\[
y''' - 4y'' + 4y' = 0.
\]